Chemical freeze-out in Au-Au collisions at RHIC

Jaakko Manninen¹ F.Becattini^{1,2}

¹INFN Firenze

²University of Florence

August 22, 2008

Jaakko Manninen 💦 Estes Park, August 23rd 2008

< ∃ →

Outline

- Motivation
- Statistical hadronization model
- 2 Chemical freeze-out at RHIC
 - System size dependence
- Core-corona picture in A-A collisions
 Two component model

4 Summary

Motivation

Motivation Statistical hadronization model

• Complete our previous studies at lower energies

- Energy dependence
- System size dependence
- Cross-check previous similar analyses at RHIC
 - Fitting a subset of particle ratios bias the outcome (arXiv:0707.4154)
 - The magnitude of the bias is not known without explicit comparison
 - New important data from STAR released
 - \rightarrow centrality dependence

Motivation Statistical hadronization model

Statistical hadronization model (1)

At RHIC grand-canonical ensemble seems most appropriate:

$$\langle N_j \rangle = \frac{(2J_j+1)V}{(2\pi)^3} \int d^3 \mathbf{p} \left[\gamma_S^{-n_s} \mathrm{e}^{\sqrt{\mathbf{p}^2 + m_j^2}/T - \boldsymbol{\mu} \cdot \mathbf{q}_j/T} \pm 1 \right]^{-1}$$

- Hadron radiation from a fireball is governed by equilibrium momentum distribution
- The underlying reason for the (apparent) equilibrium is being investigated
- Take into account all *** and **** hadrons up to mass 1.8 GeV and follow the decay chains to obtain final multiplicity
- Inclusion of resonances takes care of the strong interactions

Motivation Statistical hadronization model

Statistical hadronization model (A-A at RHIC)

$$\left\langle \frac{dN_j}{dy} \right\rangle = \frac{(2J_j+1)V}{(2\pi)^3} \int d^3 \mathbf{p} \left[\gamma_S^{-n_s} \mathrm{e}^{\sqrt{\mathbf{p}^2 + m_j^2}/T - \boldsymbol{\mu} \cdot \mathbf{q}_j/T} \pm 1 \right]^{-1}$$

• Hadron multiplicities can be described by 4 free parameters

- Temperature T
- Baryon chemical potential μ_B (μ_S, μ_Q)
- System volume V
- at RHIC $V := \frac{dV}{dy} \Delta y \approx \text{constant}$ due to boost invariance
- Strangeness phase-space occupancy factor γ_S
- The \sqrt{s} and N_P dependence of the parameters *is not* known \rightarrow fit to data \rightarrow thermodynamics

Chemical freeze-out temperature at RHIC Au-Au 200AGeV

Inclusion of STAR data NECESSARY (primary tracks: too few dof)

- Rafelski γ_S, γ_q: over-fitting PHENIX data
- Others agree with each other in-spite of (significant) differences in details

Everybody agree: No dependence on centrality Vertical line: Finite system size enters the game (canonical ensembles at mid-rapidity?)

System size dependence

Baryon chemical potential at RHIC Au-Au 200 AGeV

- Independent on data set
- Independent on version of SHM
- µ_B ∈ [20, 30]MeV with relatively large uncertainty

- ∃ →

Everybody agree: Weak dependence on centrality Rapidity dependence of μ_B : strong dependence expected at large y

System size dependence

Strangeness saturation at RHIC Au-Au 200 AGeV

- THERMUS and Firenze in good agreement (ratios vs. yields)
- γ_S slightly below unity in the whole range

Weak dependence on centrality

Ultra-peripheral systems: seems as expected, BUT canonical effects especially important for (multi)strange hadrons

System size dependence

Chemical freeze-out at RHIC Au-Au 130 AGeV

GSI: central collisions T=165.5±5.5; μ_B =38±11 (ratios) GSI: central collisions T=168; μ_B =34; dV/dy=1700 fm³ (yields) Krakow: central collisions T=165±7; μ_B =41±5 Cape-Town (3 centralities): T≈165±5; $\mu_B \approx 35 \pm 5$

Different groups end up with the same T, μ_B Centrality dependence similar to 200AGeV $T_{130} \lessapprox T_{200} \ \mu_{B_{130}} \gtrless \mu_{B_{200}}$

System size dependence

Limiting conditions at ($\langle N_P \rangle > 50$) RHIC Au-Au collisions

The thermodynamical state of matter is similar

- at all centralities
- at both energies

in Au-Au collisions at RHIC

At RHIC Au-Au collisions, limiting conditions have been reached?

 $T_{CFO} \approx T_{transition}$ at RHIC

Jaakko Manninen 🛛 Estes Park, August 23rd 2008

Secondary corrections become important at RHIC

Fitting <u>a subset</u> of hadronic ratios (all fits to ratios so far) (a) bias the fit (arXiv:0707.4154) (b) lead to unrealistically small χ^2_{min}

Strangeness under-saturation due to core-corona effects?

(J. Cleymans, B. Kampfer, P. Steinberg, S. Wheathon, hep-ph 0212335 (2002))
F.B., M. Gazdzicki, A.K., J.M., R. Stock, Phys. Rev. C 69, 024905 (2004)
P. Bozek, Acta Phys.Polon.B36:3071 (2005)
C. Hohne, F. Puhlhofer, R. Stock, Phys. Lett. B 640, 96 (2006)
K. Werner, Phys. Rev. Lett. 98, 152301 (2007)

- Central core in full chemical equilibrium ($\gamma_S = 1$)
- In corona, p-p type of interactions (strangeness under-saturated)

Two component model

STAR Au-Au 200 AGeV: ϕ meson

$$\frac{\langle \frac{dn}{dy} \rangle_{AA}}{N_P \langle \frac{dn}{dy} \rangle_{pppp}} \sim A + \frac{N_S}{N_P} (1 - A) \qquad A = \frac{f}{2n_0} \frac{\langle \frac{dp}{dy} \rangle_{core}}{\langle \frac{dn}{dy} \rangle_{pppp}}$$

 N_S = number of single NN collisions, from Glauber model

Jaakko Manninen 👘 Estes Park, August 23rd 2008

Two component model

 ϕ yields support geometrical interpretation

 ϕ meson very well described in 2-component picture Difficult to describe in conventional SHM fits

 $\leftarrow \phi/N_P$ in Au-Au per $\phi/2$ in pp at 200GeV

A can be fixed from data

- blue: A fixed to peripheral
- red: A fixed to central

Strangeness undersaturation in A-A due to corona effects?

- In central C-C, Si-Si, Pb-Pb at top SPS beam energy: strangeness undersaturation ($\gamma_S < 1$) can be understood in two component picture Phys.Rev.C73:044905
- First (very preliminary) fits at RHIC Au-Au 200AGeV: Two component model can describe the data at least at the same level as SHM(γ_S)

4 free parameters \rightarrow 3 free parameters Opens room for more complicated corrections

Summary and outlook

Summary

- We confirm (some of the) previous results in Au-Au collisions at RHIC
- Central values of fit parameters from fits to ratios and yields in approximate agreement, χ^2_{min} not!
- Neither centrality nor beam energy dependence in thermodynamical state at RHIC at chemical freeze-out (non-peripheral collisions)
- γ_S might reflect core-corona effects in A-A collisions
- ϕ yields support two-component picture, disfavor SCV picture

Outlook

• Repeat analysis at RHIC in the two-component frame-work

