**Bulk Matter and Strangeness Session** 

# Bulk matter physics and its future at the LHC

- 1. <u>Bulk matter physics:</u>
- 2. <u>The usual suspects:</u>
- 3. <u>Statistical observables</u>:
- 4. <u>Baryon production</u>:
- 5. <u>Multi-parton dynamics</u>:

- $p_{\mathsf{T}}$  range, hadro-production and collectivity
- experiments and detectors at the LHC
- inclusive measurements
- investigations in p+p
- expectations in p+p and recombination
- 6. <u>Summary and prospects:</u>
- first physics at LHC and next steps

## **Boris HIPPOLYTE (IPHC - STRASBOURG)**





Hot Quarks 2008 – Colorado - 23/08/08



## Bulk matter and properties in A+A? ... in p+p?

#### Bulk matter: global properties describing the main characteristics of particle production/emission

- 1) most of the particles are in the soft physics region (precise range?);
- in A+A 2) statistical description and hydrodynamics (collective behavior) works pretty well; 3) use differences to investigate new mechanisms (enhancement, suppression...);





## Bulk matter and properties in A+A? ... in p+p?

#### Bulk matter: global properties describing the main characteristics of particle production/emission

- 1) most of the particles are in the soft physics region (precise range?);
- in A+A 2) statistical description and hydrodynamics (collective behavior) works pretty well; 3) use differences to investigate new mechanisms (enhancement, suppression...);





Forw

 $(\mathbf{9})$ 

# ATLAS Tracker



Barrel of **Pixel** sensors (3 layers) then **Semi-Conductor Tracker** strip detector (4x2 layers and  $|\eta| \le 2.6$ ), followed by the **Transition Radiation Tracker** (3 layers of straw-tubes interspersed with a radiator for  $e/\pi$  separation) inside a **2T magnetic field**.

SCT Barrel (4x2 layers r<55 cm,  $\sigma_{r\phi/z}$ =16/580 µm)

Silicon space points: 11 max (3 for Pixel + 8 for SCT)

High occupancy for central TRT even in p+p (~ 90% for Pb+Pb)

Pixel barrel (3 layers, r< 20 cm,  $\sigma_{r\phi/z}$ =12/66 µm)

TRT Barrel (3 layers, r<115 cm,  $\sigma$ =170 µm per straw)

⇒ Charged multiplicity and spectra: fine
 ⇒ Very low p<sub>T</sub> (B<sub>T</sub>=2T) and PID with Tracker: challenging





## Reconstruction and identification at low $p_T$ with CMS: detectors involved in B=4T



Excellent impact parameter and primary vertex determinations

Hot Quarks 2008 - Estes Park





## CMS Elements and Tracker

## Reconstruction and identification at low $p_T$ with CMS: detectors involved in B=4T



Excellent impact parameter and primary vertex determinations

Hot Quarks 2008 - Estes Park







#### Modified algorithm for low-pT tracking in the pixel (3 hits): from straight line approximation to helix



F. Sikler QM06: Int.J.Mod.Phys.E16:1819-1825,2007 and CMS-CR-2007-007; F. Sikler QM08: arXiv:0805.0809 and CMS-AN-2006-101.

- dE/dx identification using both pixel and strip silicon detectors;
- topology identification: possibility for lambdas and gamma conversion too;
- optimization depending on luminosity conditions.

 $\Rightarrow$  Identification at low  $p_T$  with CMS: dE/dx and invariant mass for neutral particles



## Efficiency calculations based on 25k p+p events and 25 central Pb+Pb



references: CMS-CR2007-007 and CMS-CR2007-054

With lηl < 1.5, the average reconstruction efficiencies are 0.90/0.90/0.86 for pions/kaons/protons;</li>
Small bias (6%) at high p<sub>T</sub> but quite significant at low p<sub>T</sub> (10% correction for protons at 0.2 GeV/c).

 $\Rightarrow$  Good efficiency and identification at low  $p_T$  in CMS



## ALICE experiment and its central detectors

#### Transition-Radiation Detector

-0.9<  $\eta$  < 0.9 azimuth  $2\pi$ length ~7 m active area 736 m<sup>2</sup>

# Time Projection<br/>Chamber $-0.9 < \eta < 0.9$ <br/>azimuth $2\pi$ <br/>length 5 m<br/>active volume 88 m<sup>3</sup>

#### **Time Of Flight**

-0.9<  $\eta$  < 0.9 azimuth  $2\pi$ length 7.45 m active area 141 m<sup>2</sup>





⇒ Alice is designed for high multiplicity: excellent efficiency and resolution at low p<sub>T</sub>;
 ⇒ Charm and strange weak decay identification via topology reconstruction (not shown);
 ⇒ Lower magnetic field w-r-t Atlas and CMS but also lower luminosity conditions required.





# Particle identification vs p<sub>T</sub>

Estimated  $p_T$  ranges for 10 M central Pb-Pb events (PPR vol. II). Ranges for first year p-p events can be close if one month of data taking.



⇒ low p<sub>T</sub> : thermal emission and hydrodynamics;
 ⇒ intermediate to high p<sub>T</sub> : hadronization mechanisms, tomography.





## **Material budget**

## Cumulative mid-rapidity material budget for ALICE, ATLAS and CMS

| ALICE           | x/X <sub>0</sub> (%) | 🔮 ATLAS        | x/X <sub>0</sub> (%) | CMS              | x/X <sub>0</sub> (%) |
|-----------------|----------------------|----------------|----------------------|------------------|----------------------|
| Beam pipe       | 0.26                 | Beam pipe      | 0.45                 | Beam pipe        | 0.23                 |
| Pixels (7.6 cm) | 2.73                 | Pixels (12 cm) | 4.45                 | Pixels (10.2 cm) | 7.23                 |
| ITS (50 cm)     | 7.43                 | SCT (52 cm)    | 14.45                | TIB (50 cm)      | 22.23                |
| TPC (2.6 m)     | 13                   | TRT (1.07 m)   | 32.45                | TOB (1.1 m)      | 35.23                |



⇒ Ideal Reconstruction and identification low p<sub>T</sub> : lowest material budget





## **Material budget**

## Cumulative mid-rapidity material budget for ALICE, ATLAS and CMS

| ALICE           | x/X <sub>0</sub> (%) | 🔮 ATLAS        | x/X <sub>0</sub> (%) | CMS              | x/X <sub>0</sub> (%) |
|-----------------|----------------------|----------------|----------------------|------------------|----------------------|
| Beam pipe       | 0.26                 | Beam pipe      | 0.45                 | Beam pipe        | 0.23                 |
| Pixels (7.6 cm) | 2.73                 | Pixels (12 cm) | 4.45                 | Pixels (10.2 cm) | 7.23                 |
| ITS (50 cm)     | 7.43                 | SCT (52 cm)    | 14.45                | TIB (50 cm)      | 22.23                |
| TPC (2.6 m)     | 13                   | TRT (1.07 m)   | 32.45                | TOB (1.1 m)      | 35.23                |



⇒ Ideal Reconstruction and identification low p<sub>T</sub> : lowest material budget

# Hadro-production: equilibrium vs. non equilibrium

Statistical thermal models describe mid-rapidity  $p_T$ -integrated production of baryons

and mesons over a large energy range.

Baryo-chemical potential  $\mu_{\text{B}}$  and Chemical freeze-out Temperature  $\text{T}_{\text{ch}}$ 

I.Kraus et al., in arXiv0711.0974 [hep-ph]

ALICE Estimates : Equilibrium vs Non Eq. particle ratios



Note: Anti-particle/particle ~ unity will be difficult to constrain but can be used for addressing baryon transport



## Baryon number transport

P. Christakoglou: HEP2008, Athenes



⇒ Current measurements are compatible with no asymmetry within uncertainties





# **Baryon number transport**

#### P. Christakoglou: HEP2008, Athenes

Specific to LHC conditions: high energy so  $\overline{B}/B\sim1$  and large rapidity gap (y<sub>p</sub>±9.6)

- QGSM: asymmetry ~0% (~no transported baryons from  $y_p$  to  $y_0$  via fragmentation);
- Kopeliovitch: asymmetry  $\sim$ 5% for protons and  $\sim$ 8% for  $\wedge$ s;
- Veneziano: smaller but non-zero asymmetry.







## **Baryon number transport**

P. Christakoglou: HEP2008, Athenes

Specific to LHC conditions: high energy so  $\overline{B}/B\sim1$  and large rapidity gap (y<sub>p</sub>±9.6)

- QGSM: asymmetry ~0% (~no transported baryons from  $y_p$  to  $y_0$  via fragmentation);
- Kopeliovitch: asymmetry ~5% for protons and ~8% for Λs;
- Veneziano: smaller but non-zero asymmetry.



The systematic uncertainties on both the ratio and the asymmetry are below 1% for a material uncertainty of 15% (p > 0.5 GeV/c).

Try to perform this measurement at LHC energies

## Hadro-production from fragmentation (LUND / PYTHIA)



## In vacuum production of meson via string break-up

Probability to produce  $(q_i \overline{q}_i)$ Probability to form  $(q_{i-1}\overline{q}_i)$ Factorization: production of  $(\mathbf{q}_i \overline{\mathbf{q}}_i)$  independent of q<sub>i-1</sub> but the pair mass quark (flavour) is relevant.  $\Rightarrow$  Fragmentation in  $(q_{i-1}\overline{q}_i) \equiv meson$ 

**Production of**  $(q,\overline{q})$  via quantum mechanical tunneling:

- Classically, the pair is pulled apart by the field (no annihilation);
- Quantum mechanically, the pair is created at one point then tunnels out with a non zero probability (mass and flavor dependence).

## In vacuum production of baryon with the diquark model

Relative probability to produce a diquark pair wrt quark pair Extra suppression associated to s content Spin suppression (spin 1 diquarks wrt spin 0 diquarks) Weighted probability relative to 3-q state symmetry  $\Rightarrow$  Fragmentation in  $(q_{i-1}q_iq_i) \equiv$  baryon

Note: will be needed later when discussing coalescence and recombination





#### Modified "popcorn" scenario from the diquark model for baryon production





#### Modified "popcorn" scenario from the diquark model for baryon production









# Multi-parton dynamics in p+p at LHC energies

Soft component in p+p collision: multiple parton interactions

Hard parton scattering is one part of the story



R.Field: «The "underlying event" consists of the "beam-beam remnants" and from particles arising from soft or semi-soft multiple parton interactions (MPI).»





## **Baryon / Meson ratios at RHIC and HERA**

Probing baryon/meson differences at LHC energies implies PID over a large  $p_T$  range.



As discussed earlier, first step for investigating recombination and coalescence mechanisms





The in vacuo fragmentation of a high  $p_T$  quark competes with the in medium recombination of lower momentum quarks

- a) 6 GeV/c pion from 1x 10 GeV/c quark fragmentation
- b) 6 GeV/c pion from 2x 3 GeV/c quark recombination
- c) 6 GeV/c proton from 3x 2GeV/c quark recombination

Baryon/Meson ratios Constituent Quark Scaling (e.g. v<sub>2</sub>) Correlations via Soft+Hard contributions



"...requires the assumption of a thermalized parton phase... (which) may be appropriately called a quark-gluon plasma." Fries *et al.*, PRC 68, 044902 (2003)







# Predictions for B/M p<sub>T</sub> ratio: p+p @ 14 TeV

Ratios and differences between min. bias and underlying event description







# Predictions for B/M p<sub>T</sub> ratio: p+p @ 14 TeV

#### Ratios and differences between min. bias and underlying event description







# **Summary and Conclusion**

## First physics in the soft region will be exciting at the LHC

- most measurements will complement the RHIC ones;
- many will help understanding further particle production and defining the bulk properties of the created matter.

## <u>Couple of slides were added due to this week discussions :-)</u>

- hopefully they helped more than they added confusion;
- some other were removed...
- cool if they lead to even more discussion.

