Open charm measurement with HFT at STAR

Jan Kapitán* (for the STAR Collaboration)

Hot Quarks 2008 Aspen Lodge in Estes Park, CO August 22nd, 2008

*: Nuclear Physics Institute ASCR, Rez/Prague, Czech Republic

Open charm physics at RHIC

- heavy quarks are produced early in the collision
- they derive mass from the Higgs field stay massive even during chiral symmetry restoration

does charm quark flow?

charm energy loss?

 A_c/D^0 enhancement?

so far, heavy flavor v_2 and R_{AA} have been measured **indirectly** using decay electrons

Jan Kapitán

Open charm physics at RHIC

- heavy quarks are produced early in the collision
- they derive mass from the Higgs field stay massive even during chiral symmetry restoration

does charm quark flow?

charm energy loss?

 A_c/D^0 enhancement?

so far, heavy flavor v_2 and R_{AA} have been measured **indirectly** using decay electrons

direct reconstruction of open charm decays necessary for precision measurements...

Jan Kapitán

New detector requirements

 large background in central Au+Au (200 GeV)
 -> topological reconstruction needed

 STAR needs a high resolution displaced vertex detector:
 measure down to very low p_T: <u>thin</u> detector to minimize Multiple Coulomb Scattering

high luminosity (RHIC-II: ~ 50 kHz minimum bias rate – stochastic cooling): the detector has to be <u>fast & radiation hard</u>

Jan Kapitán

STAR with proposed Heavy Flavor Tracker (HFT)

the goal of inner tracking:

- extend TPC tracks to lower radii --> deliver ultimate impact parameter ("pointing") resolution, enabling topological identification of heavy flavor
- acceptance: 2π , $|\eta| < 1.0$

graded pointing resolution: TPC --> SSD --> HFT --> Primary Vertex (PV)

Hot Quarks 2008

Heavy Flavor Tracker design

- PIXEL detector 2 layers, thin active pixels
- Intermediate Silicon Tracker (IST) 1 layer, fast strips

SSD: r=23cm, existing detector, double-sided strips, 1% X₀

IST: r=14cm

- improve hit finding at outer PIXEL layer: RHIC-II luminosity
 hit density 8 cm⁻²
- 500 μ m thick 1cm long strips along beam direction, 1.2% X₀

PIXEL: r=2.5cm and r=8cm

- deliver ultimate pointing resolution
- hit density at first layer
 ~ 60 cm⁻²: not an issue

Hot Quarks 2008

PIXEL detector (IPHC Strasbourg + LBNL)

- novel Monolithic Active Pixel Sensors
- CMOS technology, radiation tolerant
- •18 µm pixel pitch, thin depletion region
- signal collection:
 - diffusion of e⁻ created in 15 µm thick p-epi
 small contribution from p++ sub e⁻
 collection time ~ 100 ns
- overall material budget: 0.28% X₀ / layer
- continuous readout, integrates hits during readout frame (~200 μs) hit densities correspond to 10 piled-up minbias collisions
- current prototypes (MimoSTAR):
 - 2 ms integration time, analog readout
- final MAPS sensor design:
 - >200 µs integration time, digital readout, on-chip cluster finding
 - full-size detector installation ~2012

Hot Quarks 2008

Simulations of HFT performance

• HIJING central Au+Au with added D^0/Λ_c , 20 k events

- pile-up at RHIC-II \mathscr{L} for 200 µs integration time of PIXEL:
 - pseudo-random hits added
 - significant contribution of UPC electrons for PIXEL1 layer
- assuming PID with TOF: 90% efficient, separation of
 - K/π: p_T<1.6 GeV/c, (K+π)/p: p_T<3.0 GeV/c

track impact parameter resolution:

pointing resolution delivered by PIXEL detector

Jan Kapitán

Simulations of HFT performance

• HIJING central Au+Au with added D^0/Λ_c , 20 k events

- pile-up at RHIC-II \mathscr{L} for 200 µs integration time of PIXEL:
 - pseudo-random hits added
 - significant contribution of UPC electrons for PIXEL1 layer
- assuming PID with TOF: 90% efficient, separation of
 - K/π: p_T<1.6 GeV/c, (K+π)/p: p_T<3.0 GeV/c

track impact parameter resolution:

upcoming simulations – expect better results:

- geometry changed (optimised IST design)
- RHIC-II luminosity dropped (80 kHz with electron cooling)
- pixel size decreased (from 30 μm)

no systematic errors perfect alignment

Jan Kapitán

D^o reconstruction

- $D^0 \rightarrow K^- \pi^+$, B.R. 3.8%; $c\tau = 123 \ \mu m$; $m = 1.865 \ GeV/c^2$ • assuming:
 - N_{bin} scaling for D⁰ yields, p+p: dN/dy = 0.002
 - → power-law p_T spectrum: $dN/dp_T = p_T * (1+p_T/p_0)^{-n} \langle p_T \rangle = 1.0$ GeV/c, n=11

TPC reco + PIXEL acceptance require good reconstructed hits in both PIXEL layers

after topological cuts:

Jan Kapitán

D^o – signal from 500M central Au+Au events

despite significant effect of pile-up, detector performance still very good

estimated mass peaks

Jan Kapitán

Λ_c reconstruction

• $\Lambda_c \rightarrow K^- \pi^+ p$, B.R. 5%; $c\tau = 60 \mu m$; $m = 2.286 \text{ GeV/c}^2$ • for the case of no enhancement: $\Lambda_c/D^0 \sim 0.2$

PID of daughter tracks required to reduce combinatorial background – gives better signal significance for $p_T < 5$ GeV/c, although it limits acceptance

- can't get 3 sigma signal for p_{τ} <2 GeV/c
- optimized cuts for $p_T 2-5$ GeV/c, where we want to measure (enhanced?) Λ_c/D^0 ratio

Hot Quarks 2008

Λ_c signal significance 500M central Au+Au events

 ${\scriptstyle \bullet}$ due to lower yield and large backgrounds, it's much worse than for $D^{\scriptscriptstyle 0}$

• estimated mass peaks for no Λ_c/D^0 enhancement:

Jan Kapitán

Expected first results

year 1

year 2

- v₂ of D⁰ meson flow of c quark
- extreme scenarios:
 - \rightarrow v₂(c) = v₂(q)
 - $+ v_2(c) = 0$

- pin down energy loss of c quark
- test mechanisms of energy loss in the medium
- Λ_c yield
- does the B/M anomaly persist in heavy quark sector?

Jan Kapitán

Heavy Flavor Tracker design approaching its final form

- HFT will perform topological reconstruction of open charm precision measurements of D⁰ meson v₂ and R_{cP}, Λ_c/D^0 ratio
- Heavy Flavor Tracker at STAR experiment will deliver key measurements to understand the properties of created medium and will make RHIC-II heavy flavor program competitive with the LHC

Thanks!

Recent articles

for more information about RHIC-II and theory, see for example:

A. D. Frawley, T. Ullrich and R. Vogt: Heavy flavor in heavy-ion collisions at RHIC and RHIC II (arXiv:0806.1013)

Ralf Rapp and Hendrik van Hees: Heavy Quark Diffusion as a Probe of the Quark-Gluon Plasma (arXiv: 0803.0901)

Jan Kapitán

more on MAPS

old design (30 micron pitch)

- diode 4.5 x 4.5 microns, ~2 microns thick
- 14 microns p-epi thickness
- substrate contribution ~ 20%
- lifetimes epi: 10 mus, sub: 10 ns

•electron diffusion: $D = 3500 \text{ microns}^2 / \text{mus}$, therefore sigma = sqrt(2*D*t) is 80 microns in 1 mus, 8 microns in 10ns

•Si:

- Z=14 A=28 rho=2.33 g/cm^3
- dE/dx|MIP = 1.664 MeV/(g/cm²) = 388 eV/micron (Bethe-Bloch)
- Bichsel most prob. in 80 micron layer only 250 eV/micron!

Jan Kapitán

MimoSTAR2

Hot Quarks 2008

MIMOSTAR 2/3 technology

Figure 7-5: Two-diode logarithmic pixel, (a) principle of continuous reverse biasing, (b) conceptual design of pixel structure exploiting continuous reverse bias of the diode for charge collection.

Howard Wiemann – HFT CD0 review (February 2008, BNL)

Phase 1 / Ultimate technology (MIMOSA8/16/22)

Howard Wiemann – HFT CD0 review (February 2008, BNL)

higher luminosities + ghosting

Jan Kapitán

detector designs

	cur	rent design	simulated design		
layer	r (cm)	Hit resolution (<i>r-φ</i> x <i>z</i>) (μm x μm)	r (cm)	Hit resolution (<i>r-φ</i> x <i>z</i>) (μm x μm)	
SSD	23	30 x 699	23	30 x 699	
IST2-B	-	-	17	17 x 12000	
IST2-A	-	-	17	12000 x 17	
IST1	14	115 x 2900	12	17 x 5500	
PIXEL2	8	5 x 5	7	9 x 9	
PIXEL1	2.5	5 x 5	2.5	9 x 9	

	simulated design			
layer	central collision RHIC-II pile-			
	hit density (cm ⁻²)	hit density (cm ⁻²)		
SSD	0.21	-		
IST2-B	0.38	_		
IST2-A	0.38	_		
IST1	0.77	-		
PIXEL2	2.3	6.0		
PIXEL1	17.8	43		

PIXEL1: significant contribution from UPC electrons

Jan Kapitán

Single track efficiency

2 good PIXEL hits TPC eff+acceptance at high p_{τ} : ~90%

Jan Kapitán

Lc – details on S and B

looser cuts, fit formula: exp(-a * x^b), gives: a ~ 0.6-0.8, b ~ 1.9-2.2

fitted for bg estimate in: 3-4 GeV/c (blue) 4-5 GeV/c (black) fits reasonably well for: $a \sim 0.7-0.8$, $b \sim 2.05-2.2$ taken the worst case: a = 0.7, b = 2.05

> 500M central events, no Lc/D0 enhancement

> > Hot Quarks 2008

TPC --> **PIXEL**: pointing res.

Jan Kapitán

Open charm hadrons & decays

particle	mass (GeV)	cTau (microns)	decay	B.R. (%)	res. mass	res. width
D0	1.865	122.9	K- Pi+	3.8		
			K- Pi+ Pi+ Pi-	7.7		
D+	1.870	311.8	K- Pi+ Pi+ non-res	7.5		
			K*bar ^o Pi+> K- Pi+ Pi+	1.1	896 MeV	50 MeV
Ds+	1.968	149.9	phi Pi+> K- K+ Pi+	2.2	1020 MeV	4 MeV
			K*bar ^o K+> K- K+ Pi+	2.5	896 MeV	50 MeV
Lc+	2.286	59.9	p K- Pi+ non-res.	2.8		
			р К*bar ⁰ > р К- Рі+	1.6	896 MeV	50 MeV
			Lambda* Pi+> p K- Pi+	1.8	1520 MeV	16 MeV

selected (useful) decay modes, PDGLive 2007 for Lc, most promising resonant decay channel is the one with Lambda* another good: Ds+ --> phi Pi+ --> K- K+ Pi+

Jan Kapitán

decay kinematics – Lc

daughter $p_{\scriptscriptstyle T}$ peaks at much lower values than for $D^{\scriptscriptstyle 0}$

Lc: 2-3 GeV

Jan Kapitán

D0 and Lc isolation cuts

D0		Lc		
all pT	2-3 GeV	3-4 GeV	4-5 GeV	
50 µm	80 µm	80 µm	60 µm	
50 µm	1.9 sigma	1.9 sigma	1.9 sigma	
0.98	0.996	0.996	0.995	
1.83	2.27	2.27	2.27	
1.90	2.30	2.30	2.30	
	D0 all pT 50 μm 50 μm 0.98 1.83 1.90	D0all pT2-3 GeV50 μm80 μm50 μm1.9 sigma0.980.9961.832.271.902.30	D0Lcall pT2-3 GeV3-4 GeV50 μm80 μm80 μm50 μm1.9 sigma1.9 sigma0.980.9960.9961.832.272.271.902.302.30	

for Lc cuts optimized for 3 different p_T bins, tighter than for D0 (much bigger background) for D0 same cuts for all pT bins...

Jan Kapitán

pT spectra – FONLL & power-law

M. Cacciari, Bad Honnef, June 2008 http://www.physi.uni-heidelberg.de/~kschweda/heavyquarks/M._Cacciari.pdf

Jan Kapitán

STAR TOF + **DAQ 1000**

in 2008 run, 1 (of 24) upgraded TPC sector, and 5 (of 120) TOF trays operational and in commissioning

picture: Xin Dong, March 2008

Jan Kapitán

D^o signal purity

RHIC-II pileup

Jan Kapitán