

saclay

lnstitut de **r**echerche sur les lois **f**ondamentales de

Hot Quarks Workshop - August 2008

SHADOWING EFFECTS AND J/ψ production @ $P_T \neq 0$

Andry Rakotozafindrabe CEA (Saclay) IRFU/SPhN

E. G. Ferreiro, F. Fleuret, J.-P. Lansberg and A. R. paper under preparation.

Why are we interested in the J/ ψ yield? $c\bar{c}$ resonances : early production \Rightarrow hard probes of the medium Θ Hot (QGP) effects :

- \Rightarrow melting/screening, dissociation by hard free g
- secondary in-medium production (recombination)

Shadowing : a cold nuclear matter effect

[1] Eskola, Kolhinen & Ruuskanen, Nucl. Phys. B535, 351 (1998)
[2] Eskola, Kolhinen & Salgado, Eur. Phys. J. C9, 61 (1999)
[3] Vogt, Phys. Rev. C71, 054902 (2005)

How is the shadowing predicted?

Range in x, Q² covered by the available data

EKS-like approach

Solution use data to parametrize $R_i^A(x, Q_0^2)$ and DGLAP to get it at $Q^2 > Q_0^2$

 $R^A_{\text{shadow}}(b, x, Q^2) =$ $1 + \frac{N^A(b)}{\langle N^A \rangle} \times \left[R_g^A(x, Q) \right]$

accounts for the gluon PDF modification in nucleus

How is the shadowing predicted?

pA collision

assumption : coherent interaction between parton $i \in p$

and all partons \in A along its path

EKS-like approach

impact parameter dependence :

 $R^A_{\text{shadow}}(b, x, Q^2) =$ $\times \left[R_g^A(x,Q^2) - 1 \right]$ average value of N^A

number of nucleons that contributes to shadowing at *b*

random spatial position of A nucleons following Wood-Saxon density profile

New Adding the pT dependence $(x_1, x_2) \leftarrow c\bar{c}$ hard production process (y, p_T) physical constraints

Intrinsic scheme

E. Ferreiro, F. Fleuret, A. R.

wit

arXiv:0801.4949

- $g = g + g \rightarrow c\bar{c}$ with intrinsic gluon k_T
- 4-mom conservation :

$$x_{1,2} = \frac{m_T}{\sqrt{s_{NN}}} e^{\pm y}$$

$$\mathbf{h} \quad m_T = \sqrt{m_{J/\psi}^2 + p_T^2}$$

scale chosen accordingly :

 $Q^{2} = (2m_{c})^{2} + (p_{T})^{2}$ with $m_{c} = 1.2 \,\text{GeV}/c^{2}$ input y and p_{T} spectra from p + p data

New Adding the pT dependence		
$(x_1, x_2) \xleftarrow{c\bar{c} \text{ hard production process}}_{\text{physical constraints}} (y, p_T)$		
Intrinsic scheme	1	Extrinsic scheme
E. Ferreiro, F. Fleuret, A. R. arXiv:0801.4949	E. 1	Ferreiro, F. Fleuret, JP. Lansberg, A. R. (in preparation)
^{\$} g + g → cc̄ with intrinsic gluon k _T ^{\$} 4-mom conservation : x _{1,2} = $\frac{m_T}{\sqrt{s_{NN}}} e^{\pm y}$ with $m_T = \sqrt{m_{J/\psi}^2 + p_T^2}$ scale chosen accordingly.	-CO -CO	$g + g \rightarrow c\bar{c} + g$ with collinear inital gluons : p_T is balanced by final gluon 4-mom conservation : $y, p_T, x_1 \Longrightarrow x_2 = \frac{x_1 m_T \sqrt{s} e^{-y} - M^2}{\sqrt{s} (\sqrt{s} x_1 - m_T e^y)}$ prod. model successful in p+p needed for a proper weighting of each
with $m_c = 1.2 \text{GeV}/c^2$ p + p data	÷.	kinematically allowed (x_1, x_2) : $d^4\sigma/dy dp_T dx_1 dx_2$ same scale as in the prod. model : $Q^2 = (m_T)^2$

Cross-section calculation in $g + g \rightarrow J/\psi + g$

[1] H. Haberzettl et J. P. Lansberg, PRL 100, 032006 (2008)

s-channel cut contributions [1] to the "basic" CSM :

s take into account the dynamics of $c\bar{c}$ in the bound state
need for 4-point coupling $c\bar{c} - J/\psi - g$

new degrees of freedom constrained by fits
so far the best description of low-p_T data

Our Monte-Carlo approach for J/Ψ production \Rightarrow Physical phase space and relative weighting of x_I, x_2 vs y in d+Au : $g+g \rightarrow c\bar{c}$ initial g with intrinsic k_T $g + g \rightarrow c\bar{c} + g$ collinear initial $g \Rightarrow$ extrinsic mechanism needed to give $p_T \neq 0$ to the J/Ψ

consequence : different shadowing will be obtained !

Results :1) RdAu vs y

$p_T = 0$ vs intrinsic p_T

intrinsic *p*_T vs extrinsic *p*_T

 $x_{1,2} = \frac{m_T}{\sqrt{s_{NN}}} e^{\pm y}$ Adding p_T via the intrinsic scheme: small effect because

 $\langle p_T \rangle < 2 \,\mathrm{GeV}/c < m_{J/\psi}$

Intrinsic vs extrinsic : significative differences

- Due to <x₁, x₂> being different in the two schemes
- Need nuclear abs. (final state effect)

Comparison to the data : 1) RdAu vs y

intrinsic p_T vs extrinsic p_T

Good matching obtained for both schemes

But with diff. values of
 σ_{break-up}

intrinsic: same σ_{break-up} as the best estimate in PHENIX d+Au paper [1]

extrinsic: σ_{break-up} matches NA50 (SPS) value at lower energy !

[1] PHENIX d+Au, Phys. Rev. C77, 024912 (2008)

Andry Rakotozafindrabe (CEA Saclay)

17/21

Comparison to the data : 2) RdAu vs pt

intrinsic *p*_T vs extrinsic *p*_T

- First predictions of R_{dAu}
 vs p_T
- some ingredient missing in the model ?
 - [©] like p_T broadening?
- difficult to conclude
- need more precise data

Cold effects in Au+Au : vs Npart

Intrinsic scheme

Extrinsic scheme

more suppression due to CNM effects at fwd y

Cold effects in Au+Au : vs y

less amount of recombination needed

Summary

- Glauber MC (no dynamic)
 - + intrinsic or extrinsic scheme for the J/ψ production
 - + EKS shadowing model
- First results @ $p_T \neq 0$ for the J/ ψ shadowing at RHIC
- \checkmark Different shadowing obtained in extrinsic scheme g + g \rightarrow J/ ψ + g

more suppression due to CNM effects at lyl-1.7 than at lyl-0 in AuAu

less amount of recombination needed

TO DO: in the extrinsic scheme, derive by fits to d+Au data the best break-up cross-section value and the corresponding error

Outlook

1.5

0.5

PHENIX PRL 96, 012304 (2006)

0

-2

B_{dAu}

 $\sigma_{abs} = 0 \text{ mb}$ $\sigma_{abs} = 3 \text{ mb}$

 $\sigma_{abs} = 1 + 0.75 \text{ mb}$

improvement

Projected Run8 $d+Au J/\psi R_{dAu}$

2

- High statistics (> 30×Run3) dAu from RHIC Run8
 - will allow to discriminate intrinsic vs extrinsic schemes

- NLO [de Florian & Sassot, Phys. Rev. D69:074028]
- EPSo8 with updated constrains on low-x gluon PDF from RHIC data [Eskola, Paukkunen & Salgado, arXiv:0802.0139]
- Predictions at LHC energies in the extrinsinc scheme

BACK-UP

Cold effects in $Au + Au : vs p_T$

Intrinsic scheme

Extrinsic scheme

Cold effects in Cu+Cu : extrinsic scheme

Various models for the y spectra in p+p

[NRQCD calculation] Cooper, Liu & Nayak, Phys. Rev. Lett. 93, 171801 (2004) [g(gg)_s + Feed-down] Khoze, Martin, Ryskin Stirling, Eur. Phys. J. C39, 163 (2005)

The p_T-broadening picture

<pr2> vs Npart
 flat or moderate broadening
 if brodened, what origin (s) ?
 cold effect (shadowing, Cronin)
 hot effect

hot effect (recombination)

Bar = pt-to-pt uncorrelated err. (stat. + syst.) Box = pt-to-pt correlated err. (syst.)

p_T-broadening due to random walk?

$$< p_T^2 > VSL$$

- random walk of the initial gluons in the transverse plane
 - at míd-y : slope compatíble wíth zero
 - $p1 = 0.011 \pm 0.046$
 - at forward-y :
 - $p1 = 0.093 \pm 0.034$ compatible with mid-y