

Measurement of low-mass e⁺e⁻ pair production in 1-2AGeV C+C collisions with HADES

Małgorzata Sudoł Yvonne Pachmayer

Physics motivation. Why are lepton pairs an ideal probe?

Medium modifications of hadrons:
 In-medium mass shift
 In-medium broadening
 Or both

23.4

44.4

782

1019

ω

Φ

Advantage:

- Sufficiently short life time
 - decay at least partially inside the hadronic medium
- Decay channel into lepton pairs
 - no strong final state interaction
 - reconstruction of in-medium properties possible

7.2 x 10⁻⁵

3.1 x 10⁻⁴

Physics motivation. Why are lepton pairs an ideal probe?

Medium modifications of hadrons:
 In-medium mass shift
 In-medium broadening
 Or both

Experimental challenge!

- Vector mesons are rare probe:
 - **1 VM per 1-10 Million reactions!**

- Advantage:
 - Sufficiently
 - decay
- Large background $\pi^0 \rightarrow \gamma\gamma$ (BR 99%) $\pi^0 \rightarrow \gamma e^+e^-$ (BR 1%)
- Decay channel into lepton pairs
 - no strong final state interaction
 - reconstruction of in-medium properties possible

Overview of heavy-ion experiments

rsay

DLS at the Bevalac (1987-1995)

HQ08, Aspen Lodge, Colorado, USA

DLS at the Bevalac: ete pairs

Calculation:E.LBratkovskaya eCalculation:Ernst et al.nucl-th/9809056v2PRC 58 ('98) 447

Calculation: C. Fuchs et al. Phys. Rev. C68 (2003) 014904

DLS

HQ08, Aspen Lodge, Colorado, USA

DLS at the Bevalac: e⁺e⁻ pairs

The HADES spectrometer

Geometry

Six sectors form a hexagonal frustum:

- 2π in φ
- $18^{\circ} < \theta < 85^{\circ}$
- Pair acceptance ≈ 0.35

<u>Tracking</u>

Superconducting toroid magnet (6 coils) • Bmax = 0.7 T MDC (multiwire drift chamber)

Lepton Identification

RICH , TOF & PreSHOWER

<u>Trigger</u>

LVL1: particle multiplicity > 3 LVL2: RICH - META correlation

Total statistics

650M LVL1 events

Completed Runs

Physics Runs in	p, d, π - induced	A + A		Status/Comment
2002		C + C 2 AGeV		Published!
2004		C + C 1 AGeV		Published!
2004	p + p 2.2 GeV			Analysis finished
2005		Ar + KCl 1.75 AGeV		Analysis ongoing
2006	p + p 1.25 GeV			Analysis ongoing
2007	p + p 3.5 GeV d + p 1.25 AGeV			online results!
2008	p + A 3.5 GeV			Analysis ongoing
2008/9	Upgrade RPC, DAQ			
2009			Ni + Ni	Planned
2010	π + N, A			
2011			Au + Au	
> 2011	Hades goes FAIR (8 AGeV)			

HQ08, Aspen Lodge, Colorado, USA

- Different phase space coverage of HADES and DLS
- Projection of HADES data onto the DLS acceptance & extrapolated to the region where HADES has no acceptance

HQ08, Aspen Lodge, Colorado, USA Małgorzata Sudoł

Direct Comparison of HADES with DLS Data

DLS Data: R.J. Porter et al.: Phys.Rev.Lett. 79 (1997) 1229

J. Carroll – presentation International Workshop on Soft Dilepton Production August 20-22,1997, LBNL

Direct Confirmation of DLS results

HAD

HQ08, Aspen Lodge, Colorado, USA

"long lived components"

Event generator PLUTO :

- •Thermal source (T=80MeV) $\forall \pi$ polar angle distribution from charged π analysis
- η taken from the published data (TAPS)
- • $\boldsymbol{\omega}$: m_{\perp} -scaling

systematic errors:

- 11 % π^0 normalization
- 10 % combinatorial background
- 15 % efficiency correction

Event generator PLUTO :

- •Thermal source (T=80MeV) $\forall \pi$ polar angle distribution from charged π analysis
- η taken from the published data (TAPS)
- • ω , ρ^{o} : m_{\perp} -scaling
- Δ scales with π

systematic errors:

- 11 % π^0 normalization
- 10 % combinatorial background
- 15 % efficiency correction

HQ08, Aspen Lodge, Colorado, USA

Comparison of the data with generated cocktail

Energy dependence of the excess yield

Photon data

R. Averbeck et al., TAPS Col., Z.Phys. A 359 (1997) 65 R. Holzmann et al., TAPS Col., Phys.Rev. C 56 (1997) R2920

2

E_b [AGeV]

HQ08, Aspen Lodge, Colorado, USA

Energy dependence of the excess yield

R. Averbeck et al., TAPS Col., Z.Phys. A 359 (1997) 65 R. Holzmann et al., TAPS Col., Phys.Rev. C 56 (1997) R2920

Energy dependence of the excess yield

Dominated by Δ-Dalitz decay and Bremsstrahlung

■ Factor 2 difference at $M_{ee} \approx 0.4 \text{ GeV/c}^2 \rightarrow \text{additional contributions}$

IQMD: M. Thomère et al.

Phys.Rev.C75 064902 (2007) and private communication

HSD: E.L. Bratkovskaya and W. Cassing

arXiv:0712.0635v1 and private communication

FIG. 7. (Color online) The invariant mass spectrum of the HADES Collaboration as compared with IQMD simulations for C + C at 2A GeV using $\sigma(np \rightarrow np\eta) = 2\sigma(pp \rightarrow pp\eta), \sigma(np \rightarrow np\omega) = \sigma(pp \rightarrow pp\omega), M_{\omega} = M_{\omega}^{0}$, and the branching ratio $(\eta \rightarrow e^+e^-) = 7.7 \times 10^{-6}$ (model B).

Conclusion

- HADES + DLS: enhancement scales with beam energy as pion production
- ✓ HADES confirms the DLS results
 - \rightarrow DLS puzzle is solved experimentally
- HADES will soon finalize set of the elementary data which will put boundary conditions for the theory.
- A lot of theoretical effort is made up to now to explain HADES and the DLS data.

Outline

- •Further systematic studies in progress (system size, centrality, beam energy)
 - •pA and heavy AA to investigate in-medium effects
 - •Elementary reactions
- > 2011 Hades at FAIR (8 AGeV)

A. Balanda^{3,e}, G. Bellia^{1,a}, D. Belver¹⁵, A. Belyaev⁶, G. Agakishiev⁸, C. Agodi¹, J. L. Boyard¹³, P. Braun-Munzinger⁴, P. Cabanelas¹⁵, A. Blanco², M. Böhmer¹¹, E. Castro¹⁵, S. Chernenko⁶, T. Christ¹¹, M. Destefanis⁸, J. Díaz¹⁶, F. Dohrmann⁵, A. Dybczak³, T. Eberl¹¹, L. Fabbietti¹¹, O. Fateev⁶, P. Finocchiaro¹, P. Fonte^{2,b} J. Friese¹¹, I. Fröhlich⁷, T. Galatyuk⁴, J. A. Garzón¹⁵, R. Gernhäuser¹¹, A. Gil¹⁶, C. Gilardi⁸, M. Golubeva¹⁰, D. González-Díaz⁴, E. Grosse^{5,e}, F. Guber¹⁰, M. Heilmann⁷, T. Hennino¹³, R. Holzmann⁴, A. Ierusalimov⁶, I. Iori^{9,d}, A. Ivashkin¹⁰, M. Jurkovic¹¹, B. Kämpfer⁵, K. Kanaki⁵, T. Karavicheva¹⁰, D. Kirschner⁸, I. Koenig⁴, W. Koenig⁴,
 B. W. Kolb⁴, R. Kotte⁵, A. Kozuch^{3,e}, A. Krása¹⁴, F. Krizek¹⁴, R. Krücken¹¹, W. Kühn⁸,
 A. Kugler¹⁴, A. Kurepin¹⁰, J. Lamas-Valverde¹⁵, S. Lang⁴, J. S. Lange⁸, K. Lapidus¹⁰, L. Lopes², M. Lorenz⁷, L. Maier¹¹, A. Mangiarotti², J. Marín¹⁵, J. Markert⁷, V. Metag⁸, J. Micel⁷, B. Michalska³, D. Mishra⁸, E. Morinière¹³, J. Mousa¹², C. Müntz⁷, L. Naumann⁵, R. Novotny⁸, J. Otwinowski³, Y. C. Pachmayer⁷, M. Palka⁴, Y. Parpottas¹², V. Pechenov⁸, O. Pechenova⁸, T. Pérez Cavalcanti⁸, J. Pietraszko⁴, W. Przygoda^{3,e}, B. Ramstein¹³, A. Reshetin¹⁰, M. Roy-Stephan¹³, A. Rustamov⁴, A. Sadovsky¹⁰, B. Sailer¹¹, P. Salabura³, A. Schmah⁴, R. Simon⁴, Yu.G. Sobolev¹⁴, S. Spataro⁸, B. Spruck⁸, H. Ströbele⁷, J. Stroth^{7,4}, C. Sturm⁷, M. Sudol⁴, A. Tarantola⁷, K. Teilab⁷, P. Tlusty¹⁴, M. Traxler⁴, R. Trebacz³, H. Tsertos¹², I. Veretenkin¹⁰, V. Wagner¹⁴, H. Wen⁸, M. Wisniowski³, T. Wojcik³, J. Wüstenfeld⁵, S. Yurevich⁴, Y. Zanevsky⁶, P. Zhou⁵, P. Zumbruch⁴

¹ Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy

- ² LIP-Laboratório de Instrumentação e Física Experimental de Partículas , 3004-516 Coimbra, Portugal
- ³ Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland
- ⁴ Gesellschaft für Schwerionenforschung mbH, 64291 Darmstadt, Germany
- ⁵ Institut für Strahlenphysik, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
- ⁶ Joint Institute of Nuclear Research, 141980 Dubna, Russia
- ⁷ Institut f
 ür Kernphysik, Johann Wolfgang Goethe-Universit
 ät, 60438 Frankfurt, Germany
- ⁸ II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany
- ⁹ Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
- ¹⁰ Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia
- ¹¹ Physik Department E12, Technische Universität München, 85748 München, Germany
- ¹² Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
- ¹³ Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3 Université Paris Sud, F-91406 Orsay Cedex, France
- ¹⁴ Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic
- ¹⁵ Departamento de Física de Partículas, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- ¹⁶ Instituto de Física Corpuscular, Universidad de Valencia-CSIC, 46971 Valencia, Spain

IIQUO, ASPEII LUUYE, CUIUIAUU, USA

ι•ιαιγυι∠αια υααυι

Extrapolation of Hades Data

Fit: $1/P_t d^2 N / dP_t dy \in \exp(-c_0 - c_1 P_t - c_2 (y y_{1/2})^2)$

- Efficiency- and acceptance-corrected pairs (HADES exp. data)
- Fit 2d functions
- using resulting fits to extrapolate (extrapolation in excess region $\leq 25\%$)

FIG. 7. (Color online) The invariant mass spectrum of the HADES Collaboration as compared with IQMD simulations for C + C at 2A GeV using $\sigma(np \rightarrow np\eta) = 2\sigma(pp \rightarrow pp\eta), \sigma(np \rightarrow np\omega) = \sigma(pp \rightarrow pp\omega), M_{\omega} = M_{\omega}^{0}$, and the branching ratio $(\eta \rightarrow e^{+}e^{-}) = 7.7 \times 10^{-6}$ (model B).

HQ08, Aspen Lodge, Colorado, USA