ISOSPIN EFFECTS IN RELATIVISTIC HEAVY-ION COLLISIONS

Gergely Gábor Barnaföldi – CNR, Kent State University

in collaboration with: George Fai – CNR, Kent State University; Péter Lévai – MTA KFKI RMKI, Budapest; Gábor Papp – Eötvös University, Budapest.

Hot Quarks 2008 – Workshop for young scientists on the physics of ultrarelativistic nucleus-nucleus collisions 18-23 August 2008 – Aspen Lodge at Estes Park, Colorado

OUTLINE

Motivation – effects on R_{dA} at high p_T

- EMC effect at high- p_T for π^0 at RHIC and LHC?
- Direct γ is always tricky: R_{dAu} and R_{AuAu} at high- p_T ...

Isospin effect in pQCD improved parton model

- Differences from σ_{pp}^{in} and σ_{pn}^{in}
- Isospin (a)symmetry in PDFs and nPDFs (or shadowings)
- Effect in the final state (FF): hadron ratios or $R_{dAu}^{p/\pi}$

NOT included: Modifications and isospin effect at LHC

- Error estimation and results for LHC ?
- What to measure at the LHC?

MOTIVATION-test on RHIC data

PHENIX π^0 data in dAu

- $\operatorname{arXiv:0801.4020v1} (2008)$
- $-2-3\sigma$ effect in R^{π}_{dAu} at high p_T
- This should be the EMC effect,B.A. Cole *et al.*: hep-ph/0702101

Models vs. PHENIX data

- We have slope structure at high p_T
- This slope is linear in $\log(p_T)$
- $-\pi^0$ and γ data are similar in dAu
- Stronger effect in R^{γ}_{AuAu}

Isospin Effects in Heavy-Ion Collisions

$$\frac{\mathrm{d}N}{\mathrm{d}^2 p_{\pi} \mathrm{d}y} \sim \frac{1}{\sigma^{in}} \cdot f_{a/p}(x_a, Q^2; k_T) \otimes f_{b/A}(x_b, Q^2; k_T, b) \otimes \frac{\mathrm{d}\sigma}{\mathrm{d}\hat{t}} \otimes \frac{D_{\pi/c}(z_c, \widehat{Q}^2)}{\pi z_c^2}$$

- a) Differences in inelastic cross section (σ_{NN}^{in})
 - Small differences, but changes with the \sqrt{s}
 - The pp, nn and pn(dd) cross sections are different
- b) The 'real' isospin effect is in the (n)PDFs by def.
 - Differences in pp, nn and pn(dd) in R_{dAu}
 - Isospin effect in the $S_{a/A}(x)$ is handled differently.
- c) Are there isospin differences in final state (FF, etc.)? – Can we see the effect in hadron or in R_{dAu} ratios?

19. August 2008 – HQ'08

a) Differences in the Inelastic Cross Section

a) Differences in the Inelastic Cross Section

The σ_{NN}^{in} appears as a normalization in the spectra

 $\widetilde{\sigma}_{A_{1}A_{2}}^{in} = \frac{1}{A_{1}A_{2}} \times \left[Z_{1}Z_{2}\sigma_{pp}^{in} + Z_{1}N_{2}\sigma_{pn}^{in} + Z_{2}N_{1}\sigma_{np}^{in} + N_{1}N_{2}\sigma_{nn}^{in} \right]$

 \implies Assuming $\sigma_{pp}^{in} \approx \sigma_{nn}^{in} \& \sigma_{pn}^{in} = \sigma_{np}^{in}, \text{ BUT } \sigma_{pp}^{in} \neq \sigma_{np}^{in}$

This gives the isospin correction to the $\sigma_{pp}^{in} + \delta \cdot \mathcal{O}([\sigma_{pp}^{in} - \sigma_{np}^{in}])$ $\tilde{\sigma}_{A_1A_2}^{in} \approx \sigma_{pp}^{in} + \left[2\frac{Z_1Z_2}{A_1A_2} - \frac{Z_1}{A_1} - \frac{Z_2}{A_2}\right] \times \left[\sigma_{pp}^{in} - \sigma_{np}^{in}\right]$

	O(0.5)	$\sqrt{s} \gtrsim 10~{ m GeV}$;
$\left[\sigma_{pp}^{in} - \sigma_{np}^{in}\right] pprox \langle$	$\mathcal{O}(0.1)$	$10 \gtrsim \sqrt{s} \gtrsim 100 \text{ GeV};$
	???	$\sqrt{s} \gtrsim 100 \text{ GeV}.$

Coll.	$\delta(A_1,Z_1,A_2,Z_2)$
p p	0.0
dd	-0.50
dAu	-0.50
CuCu	-0.49
AuAu	-0.48
PbPb	-0.48

... which correction is small $\lesssim 5\%$ (where it is known)

a) Differences in the Inelastic Cross Section

Problems: Let's see the data above $\sqrt{s} \sim 10$ GeV

- NO measurements at these high energies, only σ_{pp}^{tot} COMPETE, PRL 89 (2002) 201801
- We have nuclear physics theories for $\sigma_{nn}^{tot} ~(\approx \sigma_{pp}^{tot})$
- But, NO data for these, and even for σ_{pn}^{tot} , which has NOT ONLY the singlet channel

- However the uncertainty is huge, especially in σ_{NN}^{el} , we can make parameterization for ~TeV energies – without isospin differences

b) The 'Real' Isospin Effect is in the PDFs

PDFs are different for proton $(f_{a/p}(x,Q))$ & neutron $(f_{a/n}(x,Q))$

- But s, c, b, t and g have same contributions.
- Thus symmetric nuclei like d or e.g. ${}^{40}Ca$ are OK!

b) The 'Real' Isospin Effect is in the PDFs

PDFs are different for proton $(f_{a/p}(x,Q))$ & neutron $(f_{a/n}(x,Q))$

- Here are some basic rules: $f_{u(d)/p}(x,Q) = f_{d(u)/n}(x,Q)$
 - $f_{\bar{u}(\bar{d})/p}(x,Q) = f_{\bar{d}(\bar{u})/n}(x,Q)$
- But s, c, b, t and g have same contributions.
- Thus symmetric nuclei like d or e.g. ${}^{40}Ca$ are OK!
- Experimental information for pp(dp) at high-x only.

F. Zolfagharpour: arXiv:0802.1623v1

b) The 'Real' Isospin Effect is in the PDFs

PDFs are different for proton $(f_{a/p}(x,Q))$ & neutron $(f_{a/n}(x,Q))$

- Here are some basic rules: $f_{u(d)/p}(x,Q) = f_{d(u)/n}(x,Q)$ $f_{\bar{u}(\bar{d})/p}(x,Q) = f_{\bar{d}(\bar{u})/n}(x,Q)$
- But s, c, b, t and g have same contributions.
- Thus symmetric nuclei like d or e.g. ${}^{40}Ca$ are OK!
- Experimental information for pp(dp) at high-x only.

b) The nPDF (Shadowing) and Isospin (A)Symmetry

PDFs are modified inside the nucleus differently:

I. PDF based: general, but model dependent (HIJING, EKS, EPS) factorize the isospin asymmetry by the linear combination

$$f_{a/A}\left(x,Q^{2}\right) = S_{a/A}(x,b) \left[\frac{Z}{A}f_{a/p}\left(x,Q^{2}\right) + \left(1 - \frac{Z}{A}\right)f_{a/n}\left(x,Q^{2}\right)\right]$$
$$S_{a/A}(x,b): \text{ Shadowing function (e.g.: HIJING)};$$

A atomic- and Z the proton number

ONLY the PDF carries isospin effect, and consequences depend on the separation between the p and n based PDFs

II. True nPDFs: only for special nuclei are more precise (HKN), but this require more different measurements, time, money...

b) The 'Real' Isospin Effect is in the PDFs – $dAu \rightarrow \gamma$

LO dAu analysis for γ

more precise data, but more difficult theoretical case : AuAu

b) The 'Real' Isospin Effect is in the PDFs – $AuAu \rightarrow \gamma$

LO AuAu analysis for γ production

In sense of this the $dAu \rightarrow \pi$ is more complicated

b) The 'Real' Isospin Effect is in the PDFs – π^0

LO dAu analysis for π^0

R^π_{dAu}(p_T) – Here the difference is really small effect only ~ 5% at high- p_T : 0.8 FFs mix up channels 0.6 Calculations with HKN nPDFs -dd has NO shadowing ▼ π°, 0-20%, PHENIX dAu, s^{1/2}=200 AGeV 0.4 ----- $dAu/pp, s^{1/2} = 200 \text{ AGeV}$ but isospin averaged 0.2 - dAu/pn, $s^{1/2}=200$ AGeV dAu/dd, noshad s^{1/2}=200 AGeV – But, slopes are similar 0 10² p_t (GeV/c) 10

...and now let's try to "deconvolve" the shadowing part...

Here dAu were normalized by 'true' dd from HKN for π^0

This answers the origin of 'theoretical' slopes in R_{dAu}

c) Is There Isospin Modification at the Final State?

Isospin symmetry is parameterized in the FFs by definition

- Based on SU(3) symmetries e.g. for pions:
 - 1. channel: $D_u^{\pi+} = D_{\bar{d}}^{\pi+} = D_d^{\pi-} = D_{\bar{u}}^{\pi-} = \xi D_{val}^{\pi} + \zeta D_{sea}^{\pi}$
 - 2. channel: $D_u^{\pi-} = D_{\bar{d}}^{\pi-} = D_d^{\pi+} = D_{\bar{u}}^{\pi+} = (2-\xi)D_{val}^{\pi} + (2-\zeta)D_{sea}^{\pi}$
 - Symmetric: $D_s^{\pi +} = D_{\bar{s}}^{\pi +} = D_s^{\pi -} = D_{\bar{s}}^{\pi -} = D_{sea}^{\pi}$ and ... and c, b, t, g

Experimental hadron ratios can be fitted by ξ and ζ

Parallel, need to satisfy the sum rules...

SUMMARY

Are there signatures of isospin effect in HIC?

- Effect of $\sigma_{pp}^{in} \sigma_{pn}^{in}$ is tiny $\lesssim 5\%$ at RHIC
- Small difference between in R_{dA} and R_{pA} (or R_{nA}) appears

to be the same, only at high p_T values differs.

- Isospin symmetry is strongly parameterized in FFs
- \implies Goal: EMC effect seems to be still there.

Next: Nuclear modifications and isospin effect at LHC

- CMS-TOTEM going to measure the σ_{NN} at LHC energies
- ... and RHIC capable of measure dd, p(n)A collisions
- Error estimates for σ_{NN}^{in} at LHC energies
- Sensitivity of R_{NA} in 8.8 TeV pPb, nPb and dPb

BACKUP SLIDES

MOTIVATION – predictions for LHC

Calculations for LHC in dPb

- GGB@QM'08, x scaling in $R^{\pi}_{dAu}(x)$
- Comparison with scaled RHIC data
- HKN shadowing is a recent one,
 HIJING and EPS are the strongest.

Final(?) prediction: *dPb* with HKN

- weak suppression at low p_T
- Tested also with 'cold quenching' in the GLV framework for two cases: $L/\lambda = 1$ and 3.

Is there any new effect with same strength at high p_T ?

Nominate Nuclear Modifications

EMC were measured by many experimental collaborations

- Strict def.: EMC effect is in $[0.3; 0.8] \ni x$, where $F_2^A/F_2^D \leq 1$
- Non-strict: Where the slope is negative: $[0.1; 0.7] \ni x$
- at RHIC these are [30; 80] and [10; 70] GeV/c $\ni p_T$ respectively

Nuclear effects at very high- p_T in central dAu collision

