

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Bjørn Bäuchle, Marcus Bleicher

The UrQMD-Group

Institut für Theoretische Physik, Goethe-Universität, Frankfurt am Main

Hot Quarks 2008 August 19th, 2008

The UrQMD-Group

Marcus Bleicher, Horst Stöcker, Gerhard Burau, Stephane Häussler, Qingfeng Li, Michael Mitrovski, Elvira Santini, Bjørn Bäuchle, Hannah Petersen, Jan Steinheimer, Sascha Vogel, Gunnar Gräf, Katharina Schmidt, Timo Spielmann

For the hydro code

Dirk Rischke

Sponsors

Table of Contents

Introduction: Why photons?

Production processes Difficulties in measurements

Theoretical Modelling

Other models General theoretical uncertainties

Our Model UrQMD and UrQMD + Hydro Photons from the model

Results

Conclusions

Interactions with photons

Photons are the gauge bosons of electromagnetic interactions.

- Photons do not interact strongly
- Small EM coupling constant is advantage and disadvantage!

Interactions with photons

Photons are the gauge bosons of electromagnetic interactions.

- Photons do not interact strongly
- Small EM coupling constant is advantage and disadvantage!

Advantage

Photons, once produced, will leave the reaction zone undisturbed

Interactions with photons

Photons are the gauge bosons of electromagnetic interactions.

- Photons do not interact strongly
- Small EM coupling constant is advantage and disadvantage!

Advantage

Photons, once produced, will leave the reaction zone undisturbed

Disadvantage

Low production cross section

- Helios, WA 80, CERES (SPS) ¹ upper limits
- ▶ WA 93 (SPS) and STAR (RHIC) no results (yet)
- WA 98² first measurements at SPS
- PHENIX³ (RHIC) various results

¹Helios: Z. Phys. C **46**, 369 (1990); WA 80: Z. Phys. C **51**, 1 (1991); PRL **76**, 3506 (1996); CERES: Z. Phys. C **71**, 571 (1996) ²PRL **85**, 3595 (2000) ³e.g. PRL **94**, 232301 (2005)

Bjørn Bäuchle, ITP Frankfurt

- ▶ Helios, WA 80, CERES (SPS) ¹ upper limits
- ▶ WA 93 (SPS) and STAR (RHIC) no results (yet)
- WA 98² first measurements at SPS
- PHENIX³ (RHIC) various results

- Photons from hadronic decays make ~ 97 % of all photons
- Uncertainties in hadron yield significantly change direct photon yield
- Also, photon sample is contaminated by neutral hadrons

```
<sup>1</sup>Helios: Z. Phys. C 46, 369 (1990); WA 80: Z. Phys. C 51, 1 (1991); PRL 76, 3506 (1996);
CERES: Z. Phys. C 71, 571 (1996)
  <sup>2</sup>PRL 85, 3595 (2000)
   <sup>3</sup>e.g. PRL 94, 232301 (2005)
                                        Direct Photons in Heavy-Ion Collisions
```

HQ 2008 6 / 16

Why photons	Theory ●○○	UrQMD+photons 000	Results 000	Conclusions
D	– time hierachv			

Theoretical challenge:

Find out what stages contribute most / how much to photon yield!

Theoretical challenge:

Find out what stages contribute most / how much to photon yield!

Simple picture: Hard photons are emitted early, soft photons late: From Heisenberg principle: $\langle t_{\rm emission} \rangle \sim 1/p_{\perp}$.

True for $\pi\pi \rightarrow \gamma\rho$; **not true** for $\pi\rho \rightarrow \gamma\pi$, because ρ 's are created at later stages

► High p⊥: yields calculated by NLO-pQCD⁴. Important at RHIC- and LHC-energies!

⁴E.g. Aurenche, Fontannaz et. al, PRD **73**, 094007 (2006)

Bjørn Bäuchle, ITP Frankfurt

- ► High p⊥: yields calculated by NLO-pQCD⁴. Important at RHIC- and LHC-energies!
- ► Hydrodynamics: naturally implement phase transition (QGP ↔ HG): e.g. Turbide, Liu , Vitev, Haglin⁵

⁴E.g. Aurenche, Fontannaz et. al, PRD **73**, 094007 (2006)

⁵Turbide, Rapp and Gale, PRC **69**, 014903 (2004); Turbide, Gale *et al.*, PRC **72**, 014906 (2005); Liu and Werner, arXiv:0712.3612 [hep-ph]; Vitev and Zhang, arXiv:0804.3805 [hep-ph]; Haglin, PRC **50**, 1688 (1994); Haglin, JPG **30**, L27 (2004)

- ► High p⊥: yields calculated by NLO-pQCD⁴. Important at RHIC- and LHC-energies!
- ► Hydrodynamics: naturally implement phase transition (QGP ↔ HG): e.g. Turbide, Liu , Vitev, Haglin⁵
- Transport: Study non-equilibrium effects and effects from dilute system: e.g. Dumitru, Huovinen, Li, Bratkovskaya⁶

⁴E.g. Aurenche, Fontannaz et. al, PRD **73**, 094007 (2006)

Bjørn Bäuchle, ITP Frankfurt

⁵Turbide, Rapp and Gale, PRC **69**, 014903 (2004); Turbide, Gale *et al.*, PRC **72**, 014906 (2005); Liu and Werner, arXiv:0712.3612 [hep-ph]; Vitev and Zhang, arXiv:0804.3805 [hep-ph]; Haglin, PRC **50**, 1688 (1994); Haglin, JPG **30**, L27 (2004)

⁶Dumitru, Bleicher, Bass, Spieles, Neise, Stöcker and Greiner, PRC **57**, 3271 (1998); Huovinen, Belkacem, Ellis and Kapusta, PRC **66**, 014903 (2002); Li, Brown, Gale and Ko, arXiv:nucl-th/9712048; Bratkovskaya and Cassing, NPA **619**, 413 (1997); Bratkovskaya, Kiselev and Sharkov, arXiv:0806.3465 [nucl.th]

What do you make of it? HSD: Take data from Zielinski^a, which shows odd behaviour: this work: take calculations from Xiong^b. Difference \sim factor 2.5 - may make a big difference!

seen

seen

seen

^aZielinski et al., PRL 52, 1195 (1984) ^bXiong, Shurvak and Brown, PRD 46, 3798 (1992)

 $\bar{K}K^{*}(892) + c.c.$

 $\pi \gamma$

•	Branching ratios	s of many pro	cesses
	not known, e.g.	$a_1 \rightarrow \gamma \pi$. PI	DG says
	a1(1260) DECAY MODES	Fraction (Γ_i/Γ)	
	$(\bar{\rho}\pi)_{S-wave}$	seen	
	$(\rho \pi)_{D-wave}$	seen	
	$(\rho(1450)\pi)_{S-wave}$	seen	
	$(\rho(1450)\pi)_{D-wave}$	seen	
	£7000)	seen	
	$I_0(980)\pi$	not seen	
	$f_0(1370)\pi$	seen	
	$f_2(1270)\pi$	seen	
	KK*(892)+ c.c.	seen	
	$\pi \gamma$.	seen	

Which channels are implemented? Bremsstrahlung? Hadronic decays?

What do you make of it? HSD: Take data from Zielinski^a, which shows odd behaviour; this work: take calculations from Xiong^b. Difference ~ factor 2.5 — may make a big difference!

^aZielinski *et al.*, PRL **52**, 1195 (1984) ^bXiong, Shuryak and Brown, PRD **46**, 3798 (1992)

(P		
$(\rho \pi)D$ -wave	seen	
$(\rho(1450)\pi)_{S-wave}$	seen	
$(\rho(1450)\pi)_{D-wave}$	seen	
$\sigma\pi$.	seen	
$f_0(980)\pi$	not seen	
$f_0(1370)\pi$	seen	
$f_2(1270)\pi$	seen	
<i>KK</i> [*] (892)+ c.c.	seen	
$\pi \gamma$	seen	

Bremsstrahlung? Hadronic decays?

What do you make of it? HSD: Take data from Zielinski^a, which shows odd behaviour; this work: take calculations from Xiong^b. Difference ~ factor 2.5 — may make a big difference!

^aZielinski *et al.*, PRL **52**, 1195 (1984) ^bXiong, Shuryak and Brown, PRD **46**, 3798 (1992) Hadronic decays are **not** in data! But: Do we believe that?

Why photons	Theory 000	UrQMD+photons	Results 000	Conclusions
UrQMD				

UrQMD

Ultra-Relativistic Quantum Molecular Dynamics

- Non-equilibrium transport model
- Hadrons and resonances up to m = 2.2 GeV
- String excitation and fragmentation
- Cross sections are parametrized via AQM or calculated by detailed balance
- pQCD hard scattering at high energies
- Generates full space-time dynamics of hadrons and strings

- Non-equilibrium initial conditions from UrQMD
- Switching to ideal relativistic one-fluid hydrodynamics when the nuclei have passed each other
- Hydro evolution with hadronic Equation of State that includes all particles from UrQMD; no phase transition
- ► Isochronous freeze-out when e < 730 MeV/fm³ (≈ 5e) in all cells
- Rescatterings and decays with hadronic cascade (UrQMD)
- See also arXiv:0806.1695 [nucl-th]

Photons from the model

Currently implemented channels in **Cascade**-part⁷:

Currently implemented rates in Hydro-part⁹

π	+	π	\rightarrow	$\gamma + \rho$,	π	+	ρ	\rightarrow	$\gamma + \pi^{(10)},$
π	+	K^*	\rightarrow	$\gamma + K$,	π	+	K	\rightarrow	$\gamma + K^*$,
ρ	+	K	\rightarrow	$\gamma + K$,	K	+	K^*	\rightarrow	$\gamma + \pi$

 $^{7}\text{Cross-sections taken from Kapusta, Lichard and Seibert, PRD 44 (1991) 2774} <math display="inline">^{8}\text{This cross-section from Xiong, Shuryak and Brown, PRD 46, 3798 (1992)}$ $^{9}\text{Parametrizations taken from Turbide, Rapp and Gale, PRC 69, 014903 (2004)}$ $^{10}\text{Includes } \pi + \rho \rightarrow a_1 \rightarrow \gamma + \pi$

Bjørn Bäuchle, ITP Frankfurt

HQ 2008 13 / 16

Direct Photons in Heavy-Ion Collisions

HQ 2008 13 / 16

1.5

• Hard $\pi + \pi$ -scatterings make power-law tail at high p_{\perp}

10⁻⁷ 10⁻⁸

0.5

1

2

2.5

3

3.5

4

4.5

Direct Photons in Heavy-Ion Collisions

HQ 2008 14 / 16

Direct Photons in Heavy-Ion Collisions

HQ 2008 14 / 16

• Also, dominant contribution from $\pi + \rho \rightarrow \gamma + \pi$

Very similar yield as in cascade mode!

► Hard photons only from before hydro-evolution ⇒ we do not lose (many) non-equilibrium photons when switching to hydro!

Similar yield in hybrid and cascade mode!

Bjørn Bäuchle, ITP Frankfurt

- ► Hard photons only from before hydro-evolution ⇒ we do not lose (many) non-equilibrium photons when switching to hydro!
- Similar yield in hybrid and cascade mode!

- ► Hard photons only from before hydro-evolution ⇒ we do not lose (many) non-equilibrium photons when switching to hydro!
- Similar yield in hybrid and cascade mode!

- ► Hard photons only from before hydro-evolution ⇒ we do not lose (many) non-equilibrium photons when switching to hydro!
- Similar yield in hybrid and cascade mode!

- ► Hard photons only from before hydro-evolution ⇒ we do not lose (many) non-equilibrium photons when switching to hydro!
- Similar yield in hybrid and cascade mode!

WI oc	hy p oo		Theory 000	UrQMD+photons 000	Results 000	Conclusions	
		Summary					
 Photons are an interesting probe and can provide unique insights to early stages. 							
	 Some models on the market, details are controverse 						
		Hybrid a	and pure-ti	ransport model yield v	very similar resu	lts	

Conclusions

- Photon emission independent of underlying dynamics
- (Initial-state-)non-equilibrium effects dominant from $p_{\perp} \sim 2 \text{ GeV}$

Things to be done:

- More production channels in cascade and hydro will be implemented
- Different EoS will be compared
- Add photons from initial hard pQCD-Scatterings

Backup-Slides

Cross-Sections and Production Rates

Cascade: Photons are produced in binary collisions acc. to their cross-sections, e.g. for $\pi^{\pm}\rho^{0} \rightarrow \gamma \pi^{\pm}$: ⁽¹¹⁾

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{\alpha g_{\rho}^{2}}{12 s \rho_{\mathrm{c.m.}}^{2}} \left[2 - s \frac{m_{\rho}^{2} - 4m_{\pi}^{2}}{(s - m_{\pi}^{2})^{2}} - \left(m_{\rho}^{2} - 4m_{\pi}^{2}\right) \left(\frac{s - m_{\rho}^{2} + m_{\pi}^{2}}{(s - m_{\pi}^{2})(t - m_{\pi}^{2})} + \frac{m_{\pi}^{2}}{(t - m_{\pi}^{2})^{2}}\right) \right]$$

Hydro: Photons are produced at a given temperature acc. to thermal rates. E.g. for $\pi \rho \rightarrow \gamma \pi$: ^(12,13)

$$E\frac{\mathrm{d}R}{\mathrm{d}^{3}p} = \left(\frac{\Lambda^{2}}{\Lambda^{2} + Em_{\pi}}\right)^{\circ} T^{2.8} \exp\left(\frac{-(1.4617 \cdot ..094 + 0.727)}{(2TE)^{0.86}} + (0.566T^{1.4094} - 0.9957)\frac{E}{T}\right) \mathrm{fm}^{-4} \mathrm{GeV}^{-2}$$

... and then boosted with the cell's velocity.

 11 See Kapusta, Lichard and Seibert, PRD **44** (1991) 2774 12 See e.g. Turbide, Rapp and Gale, PRC **69**, 014903 (2004) 13 All relevant variables given in GeV; $\Lambda=1$ GeV.

Bjørn Bäuchle, ITP Frankfurt

Photons from the model

Cascade

- Emitted photons may be only a fraction of a photon
- ► Each collision and channel: 100 photons produced with different mandelstam *t*-values and appropriate weight $N = \frac{d\sigma_{\gamma}}{dt}\Delta t/\sigma_{tot} \Rightarrow$ less events calculated, better statistics

Hydro

- Take care of proper Lorentz-Transformation (mind Cooper-Frye):
- Generate random $p_{\mu}u^{\mu}$ according to thermal rate, then generate \vec{p} so that it yields desired $p_{\mu}u^{\mu}$.
- ► For all cells, every implemented rate: one photon-information (with weight $N = \int \frac{d^3p}{E} \Delta V \Delta t E \frac{dR}{d^3p}$) is created.

Our Model in a nutshell

- Combination of hydrodynamics for high-density part and transport for initial- and final state
- ► Possibility to study impacts of different dynamics (hydro ⇔ transport) and different physics (QGP ⇔ hadron gas) by varying Equation of State in hydro
- No guesswork involved in initial conditions for hydro
- Possibility to clearly distinguish different channels
- Time-resolution of photon emission