

Te Whare Wānanga o Tāmaki Makaurau

Heavy Flavour Measurements with CMS

Philip Allfrey, University of Auckland

Hot Quarks 2008

Outline

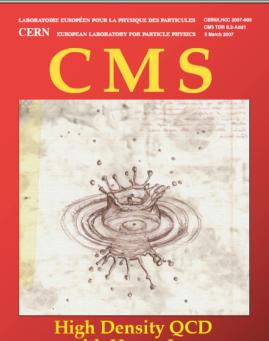
CMS Heavy Ions Programme

Quarkonia – motivation and results

b and c quarks - motivation and results

Heavy quark $\mathrm{R}_{_{\mathrm{AA}}}$ and $\mathrm{v}_{_{2}}$ - motivation

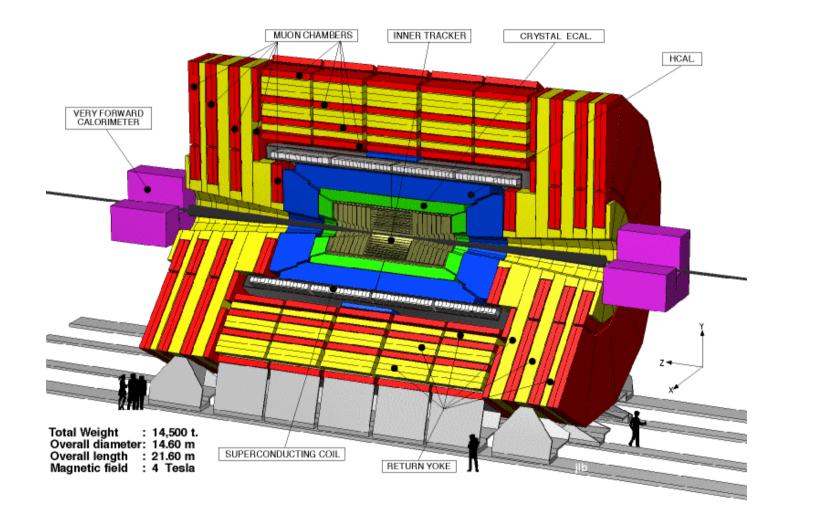
Summary

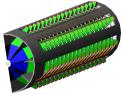

CMS Heavy Ions Programme

WHO?

Athens, Auckland, Budapest, CERN, Chongbuk, Colorado, Cukurova, Ioannina, Iowa, Kansas, Korea, Lisbon, Los Alamos, Lyon, Maryland, Minnesota, MIT, Moscow, Mumbai, Seoul, Vanderbilt, UC Davis, UI Chicago, Vilnius, Zagreb

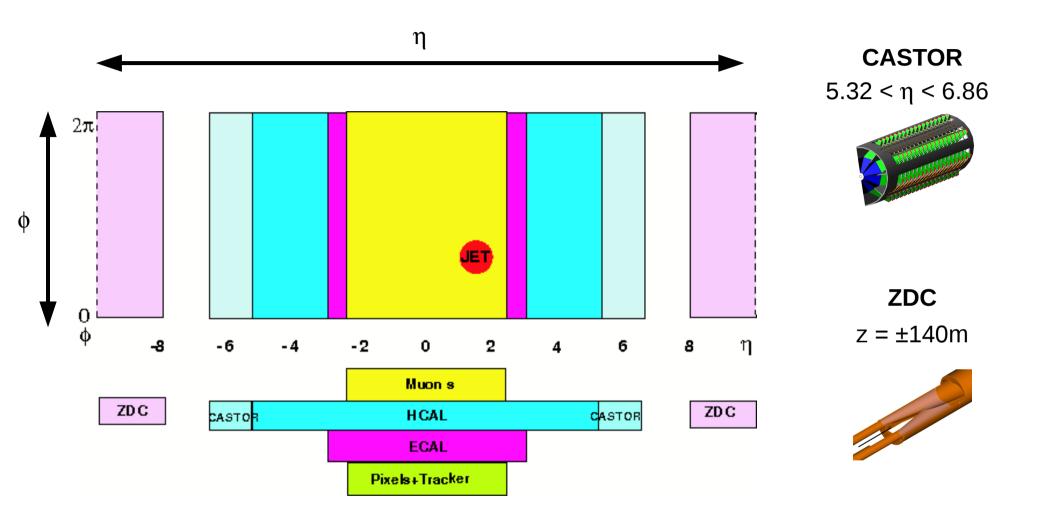
- Multiplicity
 Low p_T spectra
 Elliptic flow
 Quarkonia
 Heavy Flavours
 Jets
 High p_T hadrons
 - •Ultraperipheral collisions
 - •...


- HOW?
- High precision tracking over |η|<2.5
 Muon identification over |η|<2.5
 High resolution calorimetry over |η|<5
 Forward coverage
 Large trigger bandwidth
 - Hot Quarks 08 Philip Allfrey


High Density QCD with Heavy Ions Physics Technical Design Report, Addendum 1

J. Phys. G 34, 2307 (2007)

CMS Detector


CASTOR 5.32 < η < 6.86

ZDC z = ±140m

CMS Detector η-φ coverage

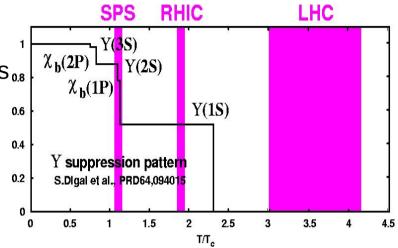
J/ ψ and Υ : Motivation

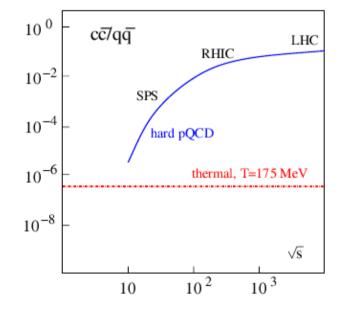
Colour charge screening in QGP depends on temperature

Quarkonia dissociate when screening length < binding radius_{0.8}

Excited states larger radius, dissociate first

- + feed down
- = stepwise suppression of J/ ψ and Υ


Quarkonia suppression acts as thermometer for QGP


This assumes Q and Qbar don't recombine due to low concentration

QQbar cross-section increases faster than qqbar, so assumption not necessarily valid

Get regeneration of quarkonia with Q and Qbar from different parents

Regeneration can enhance quarkonia production rate Hot Quarks 08 – Philip Allfrey

J/ψ and Υ : Motivation (II)

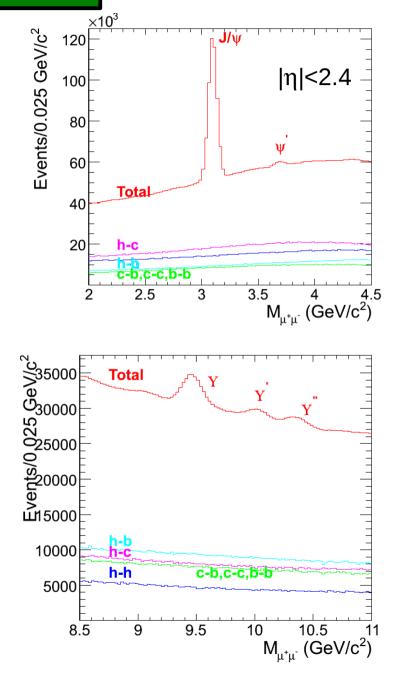
Need to separate contributions from suppression and regeneration

LHC allows studies of Υ family for first time

 Υ' dissociates at ~1.2Tc, comparable to J/ ψ but little regeneration expected

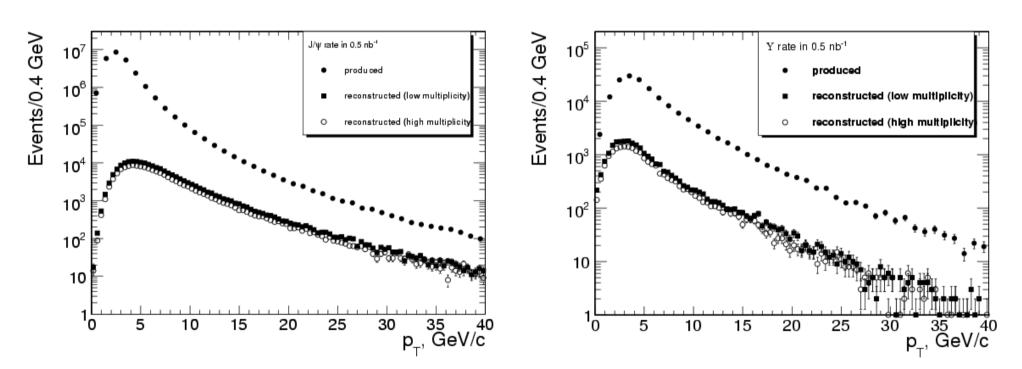
 Υ should help disentangle suppression and regeneration

J/ψ and Υ : At CMS


1 month (10⁶ s) LHC PbPb running: $L_{int} \sim 0.5 \text{ nb}^{-1}$

Production cross-sections PbPb, 5.5 TeV (µb) Υ'n **J**/ψ Ϋ́ Υ ψ σ_{prod}* Br(μ μ) 48900 880 304 80 44 $dN_{ch}/d\eta_{n=0}$: 2500 (assumed) Trigger efficiency: 1% J/ ψ **21%** Υ Tracking efficiency: >80% (|η|<1.5), >65% (|η|<2.4)

Expected yields:

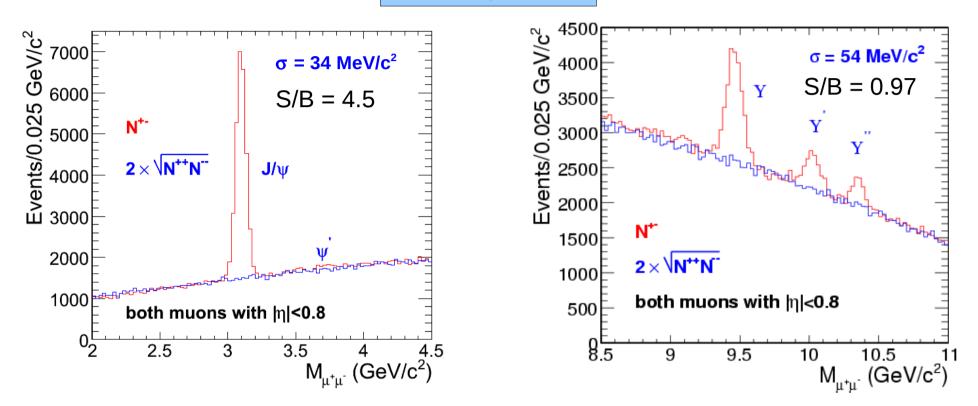

	η <0.8	η <2.4
J/ψ Υ	11600	184000
Ŷ	6400	26000
Ϋ́	2000	7300
Υ ''	1200	4400

Hot Quarks 08 – Philip All

J/ψ and Υ : p_{T} distribution

JΨ

Acceptance goes up to ~40 GeV


For ${\rm J}/\psi$, drop at low pT because muons don't have enough energy to penetrate calorimeter

For Υ acceptance goes down to 0 GeV

Υ

J/ψ and Υ : Resolution

For |η|<0.8

For η <2.4	
$\sigma = 34 \text{ MeV/c}^2$	σ = 90 MeV/c ²
S/B = 1.2	S/B = 0.12

b and **c** Hadrons: Motivation

Open heavy flavour measurements provide information on dynamical response of dense QCD medium to massive colour charges

Equivalent to info from high pT jets, for light quarks/gluons

Puzzle from RHIC: e± from semileptonic b,c decays suppressed at ~same level as light quarks

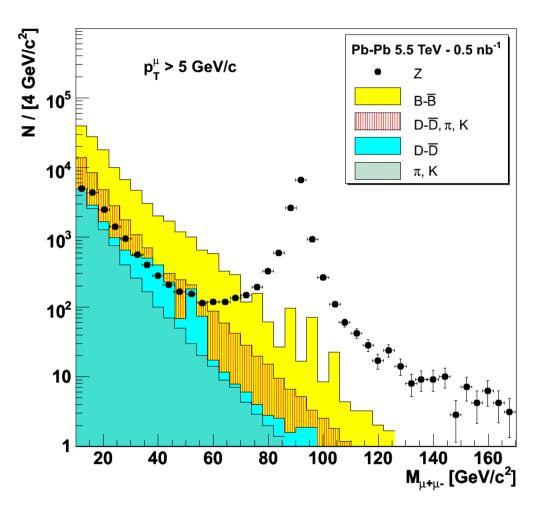
Either charm electrons dominate, or b quarks lose lots of energy

b (c) quark cross section at LHC is 100 (10) \times RHIC, so can investigate in more detail

Can provide benchmark for quarkonia suppression (no dissociation/regeneration)

Also need to separate e.g. J/ ψ from B decay from primary J/ ψ

b and c Hadrons: Dimuons


Dimuon spectrum between 10 and 70 GeV dominated by bbar decays

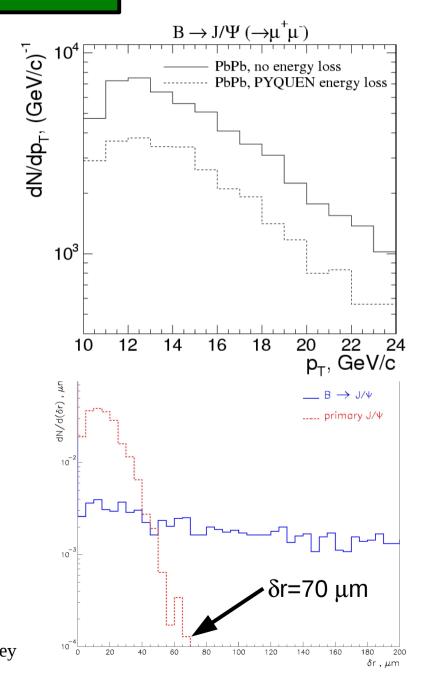
Yield sensitive to b quark in-medium energy loss

Clear Z⁰ peak, not affected by in-medium interactions

Could be used to normalise yield relative to pp collisions

(e.g. to check quarkonia, b suppression...)

b and **c** Hadrons: $B \rightarrow J/\psi X$


 $B \to J/\psi \ X \to \mu \mu \ X$ provides a clean tag for B hadrons

Provides information on b-quark energy loss

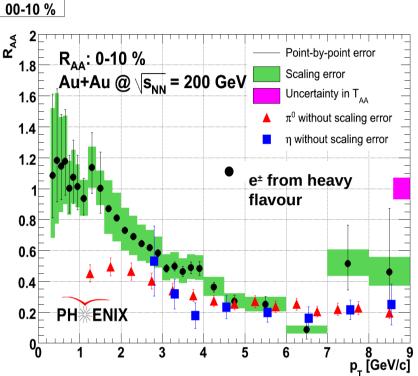
Generator level study: PbPb, 5.5 TeV, 0.5nb⁻¹

		Primary
	B → J/ψ	JIΨ
Cross section	7355 mb	506 mb
# J /ψ	8.6 x 10 ⁷	2.5x10 ⁸
# µµ	5.15x10 ⁶	1.5x10 ⁷
#µµa∦ 2.4,		
p _⊤ >5.0 GeV	57000	4.4x10 ⁵
#µµa≰ 2.4,		
p _⊤ >3.5 GeV	11300	2.3x10⁵

Secondary J/ ψ separated from directly produced J/ ψ by cut on δr – transverse distance between two muon tracks at closest approach to beamline Hot Quarks 08 – Philip Allfrey

R_{AA}: Motivation

From "dead-cone effect" expect $R_{AA}^{\pi} < R_{AA}^{D} < R_{AA}^{B}$


Not observed at RHIC, e.g. in semileptonic decays

Possible explanations:

. . .

charm dominates measured spectrum, bottom quarks lose as much energy as charm

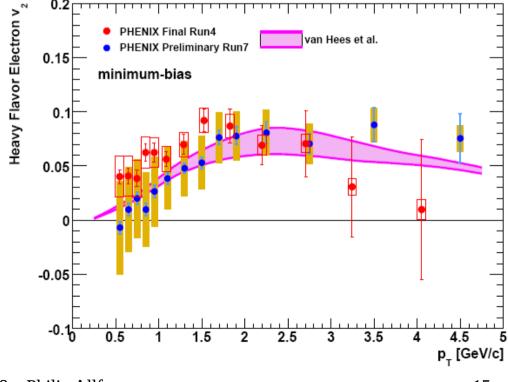
Need to explicitly reconstruct open heavy-flavour mesons

CMS studies in progress, looking at $D^0 \rightarrow K\pi$, $B \rightarrow J/\psi K \rightarrow \mu^+\mu^-K$

Heavy quark v₂: Motivation

Elliptic flow (v2) gives measure of thermalisation of system

Heavy quarks produced early in collision, traverse partonic medium


Heavy-flavour hadrons sensitive to properties of medium such as viscosity, density

Because of greater mass c and b quarks expected to have less suppression and smaller elliptic flow than light quarks

At RHIC heavy flavours showed nonzero v2, and similar energy loss to light quarks

At CMS B and D mesons from R_{AA}

studies will also be used to determine v_2

Hot Quarks 08 – Philip Allfrey

Summary

Strong heavy-ions programme within CMS

Excellent muon capabilities for reconstructing quarkonia

Best mass resolution at LHC allows separation of Υ' , important in disentangling suppression/regeneration

High-mass dimuons and J/ψ from B decays will provide information about b quark energy loss in partonic medium

Studies ongoing into reconstruction of D and B hadrons to measure $\rm R_{_{AA}}$ and $\rm v_{_2}$

Looking forward to the world beyond LHC start-up!

