Multiplicity distributions: medium dependence in MLLA

Paloma Quiroga-Arias

University of Santiago de Compostela

August 2008

In collaboration with Néstor Armesto and Carlos Pajares

Introduction

standard QCD radiation pattern

extensively tested by jet measurements in high energy in e^+e^- and $pp(p\bar{p})$ collisions \rightarrow well described by MLLA

Introduction

standard QCD radiation pattern

extensively tested by jet measurements in high energy in e^+e^- and $pp(p\bar{p})$ collisions \rightarrow well described by MLLA

Heavy Ion Collision

dense medium created \rightarrow distortion of the radiation pattern

Introduction

standard QCD radiation pattern

extensively tested by jet measurements in high energy in e^+e^- and $pp(p\bar{p})$ collisions \rightarrow well described by MLLA

Heavy Ion Collision

dense medium created \rightarrow distortion of the radiation pattern

We introduce the medium in the QCD equations in MLLA

to calculate the modification in the shape of the multiplicity distributions of the quark and gluon jets

Problem Jets Results Medi Conclusions and Outlook

Jets in QCD Medium-induced gluon radiation

Singularities: soft and collinear

 E_{g} Q 10000000000000000 Ejet • Collinear (hard) singularities:

Problem Jets in QCD Results Medium-induced gluon radiation Conclusions and Outlook

Singularities: soft and collinear

- Collinear (hard) singularities:
 - Gluon angle emission: very small $(\theta \rightarrow 0) \rightarrow$ divergence in

 $\log\theta{\rightarrow}\mathcal{O}(1/\sqrt{\alpha_s})$

Problem Jets in Q Results Medium-i Conclusions and Outlook

Jets in QCD Medium-induced gluon radiation

Singularities: soft and collinear

- Collinear (hard) singularities:
 - Gluon angle emission: very small $(\theta \to 0) \to \text{divergence in}$ $\log \theta \to \mathcal{O}(1/\sqrt{\alpha_s})$
- Infrared (soft) singularities:

Problem Results Conclusions and Outlook Jets in QCD Medium-induced gluon radiation

Singularities: soft and collinear

- Collinear (hard) singularities:
 - Gluon angle emission: very small $(\theta \to 0) \to \text{divergence in}$ $\log \theta \to \mathcal{O}(1/\sqrt{\alpha_s})$
- Infrared (soft) singularities:
 - gluon takes a very small fraction of energy from the parent $x = E_g/E_{jet} << 1 \rightarrow \text{divergence in } \log(1/x) \rightarrow \mathcal{O}(1/\sqrt{\alpha_s})$

Problem Results Conclusions and Outlook Jets in QCD Medium-induced gluon radiation

Singularities: soft and collinear

- Collinear (hard) singularities:
 - Gluon angle emission: very small $(\theta \to 0) \to \text{divergence in}$ $\log \theta \to \mathcal{O}(1/\sqrt{\alpha_s})$
- Infrared (soft) singularities:
 - gluon takes a very small fraction of energy from the parent $x = E_g/E_{jet} << 1 \rightarrow \text{divergence in } \log(1/x) \rightarrow \mathcal{O}(1/\sqrt{\alpha_s})$

Singularities: problems with convergence of the series

At small x soft and collinear logs have to be resummed

Jets in QCD Medium-induced gluon radiation

Resummation schemes

• Double Logarithmic Approximation:

Jets in QCD Medium-induced gluon radiation

Resummation schemes

- Double Logarithmic Approximation:
 - IR (soft: x<<1) and collinear (hard: heta
 ightarrow 0) logs

 $\alpha_s \log(1/x) \log \theta \rightarrow \mathcal{O}(1)$

Jets in QCD Medium-induced gluon radiation

Resummation schemes

- Double Logarithmic Approximation:
 - IR (soft: x<<1) and collinear (hard: heta
 ightarrow 0) logs

$$\alpha_s \log(1/x) \log \theta \rightarrow \mathcal{O}(1)$$

• neglect recoil effects

Jets in QCD Medium-induced gluon radiation

Resummation schemes

- Double Logarithmic Approximation:
 - IR (soft: x<<1) and collinear (hard: heta
 ightarrow 0) logs

$$\alpha_s \log(1/x) \log \theta \rightarrow \mathcal{O}(1)$$

- neglect recoil effects
- Single Logs
 - collinear logs:

$$\alpha_s \log \theta \to \mathcal{O}(\sqrt{\alpha_s})$$

Jets in QCD Medium-induced gluon radiation

Resummation schemes

- Double Logarithmic Approximation:
 - IR (soft: x<<1) and collinear (hard: heta
 ightarrow 0) logs

$$\alpha_s \log(1/x) \log \theta \rightarrow \mathcal{O}(1)$$

- neglect recoil effects
- Single Logs
 - collinear logs:

$$\alpha_s \log \theta \rightarrow \mathcal{O}(\sqrt{\alpha_s})$$

• takes into account running of α_s

Jets in QCD Medium-induced gluon radiation

Resummation schemes

- Double Logarithmic Approximation:
 - IR (soft: x<<1) and collinear (hard: heta
 ightarrow 0) logs

$$\alpha_s \log(1/x) \log \theta \to \mathcal{O}(1)$$

- neglect recoil effects
- Single Logs
 - collinear logs:

$$\alpha_s \log \theta \to \mathcal{O}(\sqrt{\alpha_s})$$

- $\bullet\,$ takes into account running of α_{s}
- Modified Leading Logarithmic Approximation:
 - SL corrections to DLA

 $\alpha_s \log(1/x) \log \theta + \alpha_s \log \theta \rightarrow \mathcal{O}(1) + \mathcal{O}(\sqrt{\alpha_s})$

Jets in QCD Medium-induced gluon radiation

Resummation schemes

- Double Logarithmic Approximation:
 - IR (soft: x<<1) and collinear (hard: heta
 ightarrow 0) logs

$$\alpha_s \log(1/x) \log \theta \rightarrow \mathcal{O}(1)$$

- neglect recoil effects
- Single Logs
 - collinear logs:

$$\alpha_s \log \theta \to \mathcal{O}(\sqrt{\alpha_s})$$

- $\bullet\,$ takes into account running of α_s
- Modified Leading Logarithmic Approximation:
 - SL corrections to DLA

 $\alpha_s \log(1/x) \log \theta + \alpha_s \log \theta \rightarrow \mathcal{O}(1) + \mathcal{O}(\sqrt{\alpha_s})$

Jets in QCD Medium-induced gluon radiation

Resummation schemes

- Double Logarithmic Approximation:
 - IR (soft: x<<1) and collinear (hard: heta
 ightarrow 0) logs

$$\alpha_s \log(1/x) \log \theta \to \mathcal{O}(1)$$

- neglect recoil effects
- Single Logs
 - collinear logs:

$$\alpha_s \log \theta \to \mathcal{O}(\sqrt{\alpha_s})$$

- $\bullet\,$ takes into account running of α_{s}
- Modified Leading Logarithmic Approximation:
 - SL corrections to DLA:

$$\alpha_{s} \log(1/x) \log \theta + \alpha_{s} \log \theta \rightarrow \mathcal{O}(1) + \mathcal{O}(\sqrt{\alpha_{s}})$$

Jets in QCD Medium-induced gluon radiation

Resummation schemes

- Double Logarithmic Approximation:
 - IR (soft: x<<1) and collinear (hard: heta
 ightarrow 0) logs

$$\alpha_s \log(1/x) \log \theta \rightarrow \mathcal{O}(1)$$

- neglect recoil effects
- Single Logs
 - collinear logs:

$$\alpha_s \log \theta \to \mathcal{O}(\sqrt{\alpha_s})$$

- $\bullet\,$ takes into account running of α_{s}
- Modified Leading Logarithmic Approximation:
 - SL corrections to DLA:

 $\alpha_s \log(1/x) \log \theta + \alpha_s \log \theta \rightarrow \mathcal{O}(1) + \mathcal{O}(\sqrt{\alpha_s})$

Jets in QCD Medium-induced gluon radiation

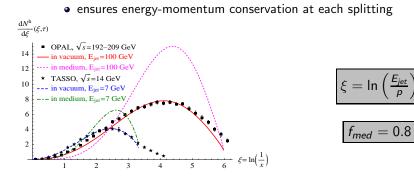
Medium-induced gluon radiation

- Heavy Ion Collisions: dense medium created. Jet traveling through it.
 - $\bullet\ medium-induced\ radiation \rightarrow distortion\ of\ standard\ (vacuum)\ QCD\ radiation\ pattern$
- Most of the present phenomenology only for leading partons
- Study of the subleading structure is becoming experimentally accessible
 - RHIC
 - LHC

Jets in QCD Medium-induced gluon radiation

Medium-induced gluon radiation

- We use the simple prescription by Borghini and Wiedemann to study the effect of the medium-modification of the branching process
 - treats leading and subleading branchings on the same footing



P. Quiroga-Arias (USC), Hot Quarks 08, Aspen Lodge

The medium The equations Solving the equations

Introducing the medium

- We introduce a modification in the splitting functions
- Enhancement of the infrared parts of the kernels

 $K_Q^G(x) = rac{C_F}{N_c} \left[rac{1+f_{med}}{x} - 1 + rac{x}{2}
ight] \qquad \qquad q o gq$

Borghini and Wiedemann, 2005

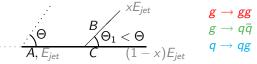
$$N_c$$
: the number of colors, $C_F = \frac{N_c^2 - 1}{2Nc} = 4/3$: Casimir factor

The medium The equations Solving the equations

Evolution equations in MLLA

The medium The equations Solving the equations

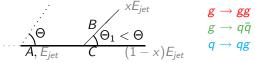
Evolution equations in MLLA



$$A = g: \quad G'_G(y) = \int_0^1 dx \, \mathcal{K}_G^Q \gamma_0^2 [G_G(y + \ln x) G_G(y + \ln(1 - x)) - G_G(y)] \\ + n_f \int_0^1 dx \, \mathcal{K}_G^Q \gamma_0^2 [G_Q(y + \ln x) G_Q(y + \ln(1 - x)) - G_G(y)]$$

The medium The equations Solving the equations

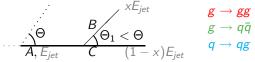
Evolution equations in MLLA



$$A = g: \quad G'_{G}(y) = \int_{0}^{1} dx \, \mathcal{K}_{G}^{G} \gamma_{0}^{2} [G_{G}(y + \ln x) G_{G}(y + \ln(1 - x)) - G_{G}(y)]$$
$$+ n_{f} \int_{0}^{1} dx \, \mathcal{K}_{G}^{Q} \gamma_{0}^{2} [G_{Q}(y + \ln x) G_{Q}(y + \ln(1 - x)) - G_{G}(y)]$$
$$A = q: \quad G'_{Q}(y) = \int_{0}^{1} dx \, \mathcal{K}_{Q}^{G} \gamma_{0}^{2} [G_{G}(y + \ln x) G_{Q}(y + \ln(1 - x)) - G_{Q}(y)]$$

The medium The equations Solving the equations

Evolution equations in MLLA



$$A = g: \quad G'_{G}(y) = \int_{0}^{1} dx \mathcal{K}_{G}^{G} \gamma_{0}^{2} [G_{G}(y + \ln x) G_{G}(y + \ln(1 - x)) - G_{G}(y)] + n_{f} \int_{0}^{1} dx \mathcal{K}_{G}^{Q} \gamma_{0}^{2} [G_{Q}(y + \ln x) G_{Q}(y + \ln(1 - x)) - G_{G}(y)] A = q: \quad G'_{Q}(y) = \int_{0}^{1} dx \mathcal{K}_{Q}^{G} \gamma_{0}^{2} [G_{G}(y + \ln x) G_{Q}(y + \ln(1 - x)) - G_{Q}(y)] n_{f}: \text{ number of active flavors,} \quad \gamma_{0}^{2} = \frac{2N_{c}\alpha_{s}}{\pi}, \quad y = \ln \frac{E_{jet}\Theta}{Q_{0}}$$

The medium The equations Solving the equations

The equations

• Probability distributions in terms of the normalized factorial moments M_q

$$G_i(y,z) = \sum_{n=0}^{\infty} (z+1)^n P_n^i = \sum_{q=0}^{\infty} \frac{z^q}{q!} \langle n_i \rangle^q M_q, \quad (i = G, Q)$$

The medium The equations Solving the equations

The equations

• Probability distributions in terms of the normalized factorial moments M_q

$$G_i(y,z) = \sum_{n=0}^{\infty} (z+1)^n P_n^i = \sum_{q=0}^{\infty} \frac{z^q}{q!} \langle n_i \rangle^q M_q, \quad (i=G,Q)$$

Order (q)	Normalized factorial moments M_q
First $(q = 1)$	$M_1 = rac{\langle n_i angle}{\langle n_i angle} = 1$
Second $(q = 2)$	$M_2=rac{\langle n_i(n_i-1) angle}{\langle n_i angle^2}$ (related to D^2)

The medium The equations Solving the equations

The equations

• Probability distributions in terms of the normalized factorial moments M_q

$$G_i(y,z) = \sum_{n=0}^{\infty} (z+1)^n P_n^i = \sum_{q=0}^{\infty} \frac{z^q}{q!} \langle n_i \rangle^q M_q, \quad (i=G,Q)$$

Order (q)	Normalized factorial moments M_q
First $(q = 1)$	$M_1 = rac{\langle n_i angle}{\langle n_i angle} = 1$
Second $(q = 2)$	$M_2=rac{\langle n_i(n_i-1) angle}{\langle n_i angle^2}$ (related to D^2)

Notation of moments: F_q for gluon and Q_q for quark distributions

The medium The equations Solving the equations

The equations

(

• Probability distributions in terms of the normalized factorial moments M_q

$$G_i(y,z) = \sum_{n=0}^{\infty} (z+1)^n P_n^i = \sum_{q=0}^{\infty} \frac{z^q}{q!} \langle n_i \rangle^q M_q, \quad (i=G,Q)$$

Order (q)	Normalized factorial moments M_q
First $(q=1)$	$M_1 = rac{\langle n_i angle}{\langle n_i angle} = 1$
Second $(q = 2)$	$M_2=rac{\langle n_i(n_i-1) angle}{\langle n_i angle^2}$ (related to D^2)

Notation of moments: F_q for gluon and Q_q for quark distributions

• Introduce series in the equations and take terms with equal $\mathcal{O}(z^n)$ in both sides:

The medium The equations Solving the equations

The equations

(

• Probability distributions in terms of the normalized factorial moments M_q

$$G_i(y,z) = \sum_{n=0}^{\infty} (z+1)^n P_n^i = \sum_{q=0}^{\infty} \frac{z^q}{q!} \langle n_i \rangle^q M_q, \quad (i=G,Q)$$

Order (q)	Normalized factorial moments M_q
First $(q=1)$	$M_1=rac{\langle n_i angle}{\langle n_i angle}=1$
Second $(q = 2)$	$M_2=rac{\langle n_i(n_i-1) angle}{\langle n_i angle^2}$ (related to D^2)

Notation of moments: F_q for gluon and Q_q for quark distributions

- Introduce series in the equations and take terms with equal $\mathcal{O}(z^n)$ in both sides:
 - $\mathcal{O}(z)$: equations for mean multiplicities $\langle n_i(y) \rangle'$

The medium The equations Solving the equations

The equations

1

• Probability distributions in terms of the normalized factorial moments M_q

$$G_i(y,z) = \sum_{n=0}^{\infty} (z+1)^n P_n^i = \sum_{q=0}^{\infty} \frac{z^q}{q!} \langle n_i \rangle^q M_q, \quad (i = G, Q)$$

Order (q)	Normalized factorial moments M_q
First $(q=1)$	$M_1=rac{\langle n_i angle}{\langle n_i angle}=1$
Second $(q = 2)$	$M_2=rac{\langle n_i(n_i-1) angle}{\langle n_i angle^2}$ (related to D^2)

Notation of moments: F_q for gluon and Q_q for quark distributions

- Introduce series in the equations and take terms with equal $\mathcal{O}(z^n)$ in both sides:
 - $\mathcal{O}(z)$: equations for mean multiplicities $\langle n_i(y) \rangle'$
 - $\mathcal{O}(z^2)$: equations for $(\langle n_i(y) \rangle^2)'$ (involving M_2)

The medium The equations Solving the equations

Solving the equations

• Idea: obtain algebraic equations by fixing parameters.

The medium The equations Solving the equations

Solving the equations

- Idea: obtain algebraic equations by fixing parameters.
- Ansatz: valid for very high energy

$$\langle n_G \rangle = e^{\gamma y}, \langle n_Q \rangle = \frac{1}{r} e^{\gamma y}$$

The medium The equations Solving the equations

Solving the equations

- Idea: obtain algebraic equations by fixing parameters.
- Ansatz: valid for very high energy

$$\langle n_G \rangle = e^{\gamma y}, \langle n_Q \rangle = \frac{1}{r} e^{\gamma y}$$

• We study two cases:

The medium The equations Solving the equations

Solving the equations

- Idea: obtain algebraic equations by fixing parameters.
- Ansatz: valid for very high energy

$$\langle n_G \rangle = e^{\gamma y}, \langle n_Q \rangle = \frac{1}{r} e^{\gamma y}$$

- We study two cases:
 - fix $\gamma \neq \gamma(f_{med})$: to compare with studies by Dremin et al.

The medium The equations Solving the equations

Solving the equations

- Idea: obtain algebraic equations by fixing parameters.
- Ansatz: valid for very high energy

$$\langle n_G \rangle = e^{\gamma y}, \langle n_Q \rangle = \frac{1}{r} e^{\gamma y}$$

- We study two cases:
 - fix $\gamma \neq \gamma(f_{med})$: to compare with studies by Dremin et al.
 - Solving $\mathcal{O}(z)$: $\alpha_s(f_{med})$ and $r(f_{med})$

The medium The equations Solving the equations

Solving the equations

- Idea: obtain algebraic equations by fixing parameters.
- Ansatz: valid for very high energy

$$\langle n_G \rangle = e^{\gamma y}, \langle n_Q \rangle = \frac{1}{r} e^{\gamma y}$$

- We study two cases:
 - fix $\gamma \neq \gamma(f_{med})$: to compare with studies by Dremin et al.
 - Solving $\mathcal{O}(z)$: $\alpha_s(f_{med})$ and $r(f_{med})$
 - fix $\alpha_s \neq \alpha_s(f_{med})$: new attempt

The medium The equations Solving the equations

Solving the equations

- Idea: obtain algebraic equations by fixing parameters.
- Ansatz: valid for very high energy

$$\langle n_G \rangle = e^{\gamma y}, \langle n_Q \rangle = \frac{1}{r} e^{\gamma y}$$

- We study two cases:
 - fix $\gamma \neq \gamma(f_{med})$: to compare with studies by Dremin et al.
 - Solving $\mathcal{O}(z)$: $\alpha_s(f_{med})$ and $r(f_{med})$
 - fix $\alpha_{s} \neq \alpha_{s}(f_{med})$: new attempt
 - Solving $\mathcal{O}(z)$: $\gamma(f_{med})$ and $r(f_{med})$

The medium The equations Solving the equations

Solving the equations

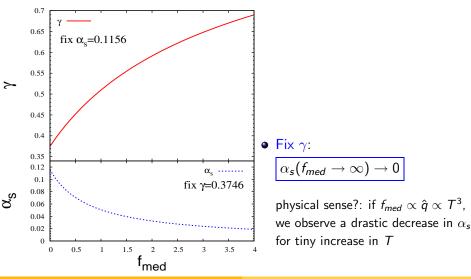
- Idea: obtain algebraic equations by fixing parameters.
- Ansatz: valid for very high energy

$$\langle n_G \rangle = e^{\gamma y}, \langle n_Q \rangle = \frac{1}{r} e^{\gamma y}$$

- We study two cases:
 - fix $\gamma \neq \gamma(f_{med})$: to compare with studies by Dremin et al.
 - Solving $\mathcal{O}(z)$: $\alpha_s(f_{med})$ and $r(f_{med})$
 - fix $\alpha_s \neq \alpha_s(f_{med})$: new attempt
 - Solving $\mathcal{O}(z)$: $\gamma(f_{med})$ and $r(f_{med})$
- $\mathcal{O}(z^2)$ equations: known the parameters form $\mathcal{O}(z)$ we calculate $M_2(f_{med})$ for both α_s and γ fix, and thus the dispersion

First order equations Second order equations Dispersion

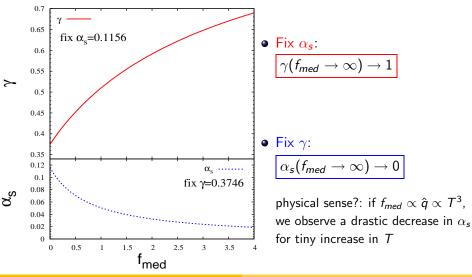
First order equations I



P. Quiroga-Arias (USC), Hot Quarks 08, Aspen Lodge

First order equations Second order equations Dispersion

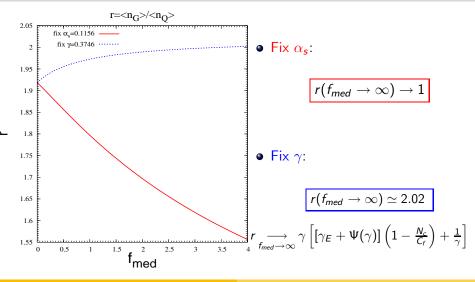
First order equations I



P. Quiroga-Arias (USC), Hot Quarks 08, Aspen Lodge

First order equations Second order equations Dispersion

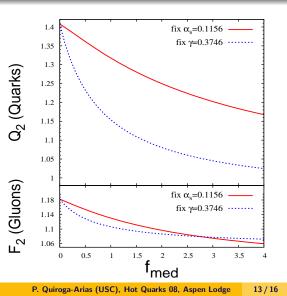
First order equations II



P. Quiroga-Arias (USC), Hot Quarks 08, Aspen Lodge

First order equations Second order equations Dispersion

Second order normalized factorial moments



$$M_2 = rac{\langle n_i(n_i-1) \rangle}{\langle n_i \rangle^2}$$

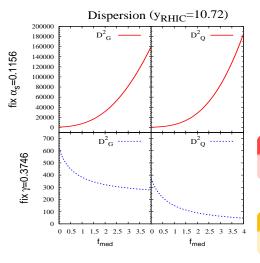
$$F_2 = \frac{\langle n_G(n_G-1) \rangle}{\langle n_G \rangle^2}$$

$$Q_2 = rac{\langle n_Q(n_Q-1) \rangle}{\langle n_Q \rangle^2}$$

• Decrease of M_2 with the contribution of the medium

First order equations Second order equations Dispersion

Dispersion:
$$D_i^2 = \langle n_i^2 \rangle - \langle n_i \rangle^2$$



$$D_i^2 = \langle n_i \rangle^2 (M_2 - 1 + \langle n_i \rangle^{-1})$$

$$D_G^2 = e^{2\gamma y} (F_2 - 1 + e^{-\gamma y})$$
$$D_Q^2 = r^{-1} e^{2\gamma y} (Q_2 - 1 + r e^{-\gamma y})$$

Fix α_s

increase in dispersion (expected)

Fix γ

drastic decrease in dispersion

P. Quiroga-Arias (USC), Hot Quarks 08, Aspen Lodge

14 / 16

MLLA: Multiplicity distributions in medium

Conclusions and Outlook

- We have introduced the medium as a multiplicative constant *f_{med}* in the singular parts of the splitting functions
- We have analyzed two cases:
 - We find an increase in the dispersion of the distribution when α_s is fixed, in disagreement with the γ fix case.
- Next step: introduce the properties of the medium, such as medium length *L* and *q̂*, and also a dependence with the jet energy
- See the modification of the multiplicity distribution with those properties

Conclusions and Outlook

- We have introduced the medium as a multiplicative constant *f_{med}* in the singular parts of the splitting functions
- We have analyzed two cases:
 - We find an increase in the dispersion of the distribution when α_s is fixed, in disagreement with the γ fix case.
- Next step: introduce the properties of the medium, such as medium length *L* and *q̂*, and also a dependence with the jet energy
- See the modification of the multiplicity distribution with those properties

Conclusions and Outlook

- We have introduced the medium as a multiplicative constant f_{med} in the singular parts of the splitting functions
- We have analyzed two cases:
 - We find an increase in the dispersion of the distribution when α_s is fixed; in disagreement with the γ fix case.
- Next step: introduce the properties of the medium, such as medium length *L* and *q̂*, and also a dependence with the jet energy
- See the modification of the multiplicity distribution with those properties

Conclusions and Outlook

- We have introduced the medium as a multiplicative constant f_{med} in the singular parts of the splitting functions
- We have analyzed two cases:
 - We find an increase in the dispersion of the distribution when α_s is **fixed**; in disagreement with the γ **fix** case.
- Next step: introduce the properties of the medium, such as medium length L and \hat{q} , and also a dependence with the jet energy
- See the modification of the multiplicity distribution with those properties

Conclusions and Outlook

- We have introduced the medium as a multiplicative constant *f_{med}* in the singular parts of the splitting functions
- We have analyzed two cases:
 - We find an increase in the dispersion of the distribution when α_s is fixed; in disagreement with the γ fix case.
- Next step: introduce the properties of the medium, such as medium length *L* and *q̂*, and also a dependence with the jet energy
- See the modification of the multiplicity distribution with those properties

Thank you!

P. Quiroga-Arias (USC), Hot Quarks 08, Aspen Lodge 16

16 / 16

MLLA: Multiplicity distributions in medium