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Introduction

standard QCD radiation pattern

extensively tested by jet measurements in high energy in e+e− and
pp(pp̄) collisions → well described by MLLA

Heavy Ion Collision

dense medium created → distortion of the radiation pattern

We introduce the medium in the QCD equations in MLLA

to calculate the modification in the shape of the multiplicity distributions
of the quark and gluon jets
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Q

Ejet
- θ

Eg

Collinear (hard) singularities:

Gluon angle emission: very small (θ → 0) → divergence in

log θ→O(1/
√

αs)

Infrared (soft) singularities:

gluon takes a very small fraction of energy from the parent

x = Eg/Ejet<< 1 → divergence in log(1/x)→O(1/
√

αs)

Singularities: problems with convergence of the series

At small x soft and collinear logs have to be resummed
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Jets in QCD
Medium-induced gluon radiation

Medium-induced gluon radiation

Heavy Ion Collisions: dense medium created. Jet traveling through it.

medium-induced radiation → distortion of standard (vacuum) QCD
radiation pattern

Most of the present phenomenology only for leading partons

Study of the subleading structure is becoming experimentally
accessible

RHIC

LHC
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Medium-induced gluon radiation

We use the simple prescription by Borghini and Wiedemann to study
the effect of the medium-modification of the branching process

treats leading and subleading branchings on the same footing

ensures energy-momentum conservation at each splitting
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OPAL,
�!!!

s=192–209 GeV
in vacuum, Ejet=100 GeV

in medium, Ejet=100 GeV

TASSO,
�!!!

s=14 GeV
in vacuum, Ejet=7 GeV

in medium, Ejet=7 GeV

ξ = ln
(

Ejet

p

)

fmed = 0.8
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Introducing the medium

We introduce a modification in the splitting functions

Enhancement of the infrared parts of the kernels

KG
G (x) = 1+fmed

x
− (1 − x)[2 − x(1 − x)] g → gg

KQ
G (x) = 1

4Nc

[

x2 + (1 − x)2
]

g → qq̄

KG
Q (x) = CF

Nc

[

1+fmed

x
− 1 + x

2

]

q → gq

Borghini and Wiedemann, 2005

Nc : the number of colors, CF =
N2

c−1
2Nc

= 4/3: Casimir factor
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Evolution equations in MLLA
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xEjet

Θ1 < Θ

C (1 − x)Ejet

g → gg

g → qq̄

q → qg

Generating functions (G (y , z)) for multiplicity distributions (Pn(y))
satisfy the MLLA equations
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A = q : G ′
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+nf

∫ 1

0

dxKQ
G γ2

0 [GQ(y + ln x)GQ(y + ln(1 − x)) − GG (y)]

A = q : G ′
Q(y) =

∫ 1

0

dxKG
Q γ2

0 [GG (y + ln x)GQ(y + ln(1 − x)) − GQ(y)]

nf : number of active flavors, γ2
0 = 2Ncαs

π
, y = ln

EjetΘ
Q0
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Probability distributions in terms of the normalized factorial moments Mq

Gi (y , z) =
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n=0(z + 1)nP i
n =
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q=0

zq
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Notation of moments: Fq for gluon and Qq for quark distributions

Introduce series in the equations and take terms with equal O(zn) in both
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O(z): equations for mean multiplicities 〈ni (y)〉′
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(
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Solving the equations

Solving the equations

Idea: obtain algebraic equations by fixing parameters.

Ansatz: valid for very high energy

〈nG 〉 = eγy , 〈nQ〉 = 1
r
eγy

We study two cases:

fix γ 6= γ(fmed ): to compare with studies by Dremin et al.

Solving O(z): αs(fmed) and r(fmed )

fix αs 6= αs(fmed ): new attempt

Solving O(z): γ(fmed) and r(fmed)

O(z2) equations: known the parameters form O(z) we calculate M2(fmed )
for both αs and γ fix, and thus the dispersion

P. Quiroga-Arias (USC), Hot Quarks 08, Aspen Lodge 10 / 16 MLLA: Multiplicity distributions in medium



Introduction
Problem
Results

Conclusions and Outlook

First order equations
Second order equations
Dispersion

First order equations I

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.5  1  1.5  2  2.5  3  3.5  4

α s

fmed

fix γ=0.3746

αs

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

         

γ

 

fix α
s
=0.1156

γ

Fix γ:

αs(fmed → ∞) → 0

physical sense?: if fmed ∝ q̂ ∝ T 3,

we observe a drastic decrease in αs

for tiny increase in T
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αs(fmed → ∞) → 0
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First order equations
Second order equations
Dispersion

First order equations II

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 0  0.5  1  1.5  2  2.5  3  3.5  4

r

fmed

r=<nG>/<nQ>

fix αs=0.1156

fix γ=0.3746 Fix αs :

r(fmed → ∞) → 1

Fix γ:

r(fmed → ∞) ≃ 2.02

r −→
fmed→∞

γ
[

[γE + Ψ(γ)]
(

1 − Nc

Cf

)

+ 1
γ

]
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First order equations
Second order equations
Dispersion

Second order normalized factorial moments

 1.06

 1.1

 1.14

 1.18

 0  0.5  1  1.5  2  2.5  3  3.5  4

F 2
 (G

lu
on

s)

fmed

fix αs=0.1156

fix γ=0.3746

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

         

Q
2 

(Q
ua

rk
s)

 

fix αs=0.1156

fix γ=0.3746

M2 = 〈ni (ni−1)〉
〈ni 〉2

F2 = 〈nG (nG−1)〉
〈nG 〉2

Q2 =
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We have introduced the medium as a multiplicative constant fmed in
the singular parts of the splitting functions

We have analyzed two cases:

We find an increase in the dispersion of the distribution when αs is
fixed; in disagreement with the γ fix case.

Next step: introduce the properties of the medium, such as
medium length L and q̂, and also a dependence with the jet energy

See the modification of the multiplicity distribution with those
properties

Work in progress
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Thank you!
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