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What is “Semi”-QGP?

quark

Heat bath

fr depends upon the color representation, 
like chemical potential.

one particle free energy
     0     (complete-QGP)  

finite (semi-QGP)
∞     (confined)

Semi-QGP is qualitatively different from 
the complete QGP.

fr =

Semi-QGP = partially deconfined QGP.

〈trLr〉 ∼ exp (−fr/T + pert.)
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Pressure, susceptibilities change 
dramatically in the semi-QGP.
How about transport coefficients?

Maybe RHIC probes 
the semi-QGP!!
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Summary: results from Nτ = 8
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Harvey Meyer The shear and bulk viscosities in SU(3) gluodynamics

Harvey Meyer (’07)

the parametric behavior is

ζ ∼
α2

sT
3

log[1/αs]
(m0 " αsT ) ; ζ ∼

m4
0

Tα2
s log[1/αs]

(αsT " m0 " T ) . (1.2)

Here m0 refers to the heaviest zero-temperature (current) quark mass which is smaller than
or of order the temperature T . We use the subscript zero to emphasize that m0 represents
a zero-temperature mass and not a finite-temperature effective quasi-particle mass. We
will see that the physics of bulk viscosity is much richer than that of shear viscosity. In
particular, the conformal anomaly (i.e. scaling violations) and the corrections to quasi-
particle dispersion relations due to interactions, both irrelevant for shear viscosity, are both
essential pieces of physics for bulk viscosity. Particle number changing interactions also
play a much larger role in bulk than in shear viscosity. These qualitative points have been
anticipated by the pioneering work of Jeon and Yaffe [14, 15] on bulk viscosity in relativistic
φ4 theory. However, we shall see later that there are some significant qualitative differences
between bulk viscosity in φ4 theory and in QCD.

Section III will present the details of the calculation of bulk viscosity. Our discussion
will at times be abbreviated, referring back to previous papers [12, 13], where much of the
technology has already been presented. We will end with a discussion in section IV. However,
for the impatient reader, we now present our main results. The coefficients, missing in
Eq. (1.2), are presented in Fig. 1 and Fig. 2. Here, Nf is the number of flavors of quarks. In
Fig. 1, all quark flavors are assumed to be massless (m0 " αsT ); in Fig. 2, all but one flavor

is assumed to be massless, with that one flavor’s mass in the range αsT " m0 " α1/2
s T . A

comparison of bulk viscosity and shear viscosity for three massless flavors is given in Fig. 3
as a function of αs. The figure makes clear that neglecting bulk viscosity in favor of shear
viscosity is actually quite a good approximation, not only at weak coupling but probably also
at moderately strong, physically interesting couplings. Fig. 4 shows the ratio ζ/α4

sη, which
at very small αs approaches a constant with corrections given by powers of (log(1/αs))−1.
The dashed line shows an old, crude estimate of the ratio of bulk to shear viscosity which
will be discussed in Sec. IV.

Throughout this paper, we will not attempt to project our leading-order results to cou-
pling higher than αs # 0.3. In previous studies of diffusion constants [13], it was found that
this is where different formulations of the effective kinetic theory, which were equivalent
at leading-order in coupling, no longer agreed within a factor of 2, suggesting a complete
breakdown of the perturbative treatment.2

II. PHYSICS OF BULK VISCOSITY

A. Basic picture

When a fluid is uniformly compressed, it leaves equilibrium. The energy density rises,
but the pressure temporarily rises by more than what is predicted by the equation of state.3

Under uniform rarefaction, the pressure temporarily falls further than is predicted by the

2 See in particular Fig. 4 of Ref. [13] at mD/T = 2.4 for 3-flavor QCD, which corresponds to αs = 0.3.
3 That the pressure is higher during compression and lower during rarefaction is dictated by the second law

of thermodynamics; if the pressure during compression were lower than in equilibrium, one could construct

3

η ∼ T 3

α2
s log[1/αs]
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: classical background with eigenvalues,

Effective theory of Semi-QGP

ρ(θ)

A0

In semi-QGP:

Color sum
Nc →∞

average of eigenvalue
with spectral density, 

〈 1
Nc

∑

color

O〉 =
∫

dθρ(θ)O(θ)

0 < 〈 1
Nc

trL〉 < 1

〈 1
Nc

trL〉 =
∫

dθρ(θ)eiθ

trL = trPeig
R

dτA0 =
∑

a

eiθ(a)

+  fluctuation

e.g. Polyakov loop

T θ/g



Confined phase 

Step functionGross-Witten model

1
Nc

trLn =
∫

dθρ(θ)einθ = 0

Complete QGP
1

Nc
trLn = 1

ρ(θ) =
1
2π

ρ(θ) = δ(θ)

Semi-QGP

Spectral density
Constant dist.,

All Polyakov loops vanish

Delta function dist.,
All Polyakov loops unity

Use two eigenvalue dist.’s.

θ

θ

θ θ

ρ ρ

ρ

ρ

0 <
1

Nc
trLn < 1



Boltzmann Equation
Kinetic Theory

hard

soft

hardhard

hard

Work only to leading log order. Only t-channel contributes.

M =
p1, a

p2, b

p3, c

p4, d

soft gluon exchange

Collision term

(gluon exchange)|M|2 ∼ 1
(q2 + m2

D)2

:color dependent Debye mass

Two body scattering:

mD

∂

∂t
fa + vp ·

∂

∂x
fa + Fext ·

∂

∂p
fa = −1

2

∑

color,spin,flavor

∫
dΠ|M|2faf b(1± f c)(1± fd)

Shear viscositySolving Boltzmann eq.
Arnold, Moore, Yaffe (’00)



η ∼ |"|2T/σ
Semi-QGP

Unlike classical dilute gas
η ∼ T/σ

σ :cross section

Viscosity
Y.H., Pisarski(’08)

Viscosity in the semi-QGP:
pure glue

perturbative modification
R(L = 1) = 1

f
(L

)

〈!〉

Gross-Witten
Step function
Leading order
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S ∼ ∼ N2
c !2

C ∼
2 2
+

∼ N4
c (!2 + !4)

η =
1
15

StC−1S ∼ ("2)2

"2 + "4
=

"2

1 + "2

at small !

partial color cancellation

Viscosity in the semi-QGP:
pure glue(contd.)

Collision term
in Large Nc

Df =

From Boltzmann Eq.

+=



quark  anti-quark scattering

Viscosity in semi-QGP
with quarks

quark quark scattering

gluon - quark scattering

With quarks, more scattering channels.

· · ·
gluon annihilation

+

+

M = +

++ +

Assume Nf ∼ Nc " 1 .

Gluon contribution is suppressed,

22

∼ !2/1 = !2

∼ !3
22

Quark contribution dominates.



Viscosity in semi-QGP
with quarks(contd.)

Y.H., Pisarski(’08)

Quark contribution dominates.

Suppression! Cusp

f
(L

)

〈!〉

Nf/Nc = 0
Nf/Nc = 1/3
Nf/Nc = 2/3
Nf/Nc = 3/3
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Summary
• Shear viscosity suppressed, near Tc,
～ℓ2. Quarks dominates.

• RHIC - probes semi-QGP?  If so, not 
only η, but RAA, real photons, dileptons, 
also suppressed by powers ofℓ.

• LHC - into complete QGP?  
If so, LHC ≠ RHIC, a BIG shear viscosity 
at LHC at short times.
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g2(k) =
g2

1 + g2

(4π)2 (11
3 Nc − 2

3Nf) log(k2/M2)

αs(k) =
αs

1 + 9αs log(k2/M2)

one lop running coupling constant

Nc=Nf=3
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g

Nf/Nc = 1
1/

(g
4
ln

(c
/g

)) c = 4

c = 5

c = 10



Weak coupling v.s. Strong coupling



Propagator in the Semi-QGP

Propagator

We use the ‘t Hooft basis (gluon =double line, quarks=single line) at finite Nc.

Distribution function

Double line notation

iD0ψ
a = (k0 + Qa)ψa iD0A

ab
µ = (k0 + Qa −Qb)Aab

µ

Qa Qa −Qb

1
exp(ω − iQa) + 1

1
exp(ω − iQa + iQb)− 1

Covariant derivative
Quarks Gluons

Q corresponds to imaginary chemical potential.

Analytical continuation:

1
(k0 + Qa)2 + k2

1
(k0 + Qa −Qb)2 + k2

ik0 + iQa → ω ± iε
Furuuchi(‘06)

Quarks and gluons  propagate in the background field                .A0 = Q/g



δ

δQ(x)
Seff = 0

1
Nc

trLn =
1

Nc

∑

a

einθa

=
∫

daeiθ(a) =
∫

dθρ(θ)einθ

Integrate over Q. Valid as saddle-point at infinite-Nc

Picture of Semi-QGP

eigenvalue-distribution function ρ(θ)

Z =
∫
DAµ exp(−S[Aµ]) =

∫
DQ exp(−N2

c Seff[Q])

Decompose Wilson loop to rotation of gauge invariant eigenvalue, Q.

Integrate over Aμ at fixed Q

with

L = Peig
R

dτA0 = Ω†eiQ/T Ω

θ(a) = Qa/T



∑

a,b

1
e(E−i(Qa−Qb))/T − 1

=
∞∑

n=1

e−nE/T |trLn|2

∑

a

1
e(E−iQa)/T + 1

=
∞∑

n=1

(−)n+1e−nE/T trLn

1
e(E−iQa)/T + 1

=
∞∑

n=1

(−)n+1e−n(E−iQa)/T

Pressure(leading order)
P =

T 4

π2

∞∑

n=1

1
n4

(
2 (|trLn|2 − 1) + 4Nf(−1)n+1RetrLn

)

Example: trace  of the propagator

Expand the distribution function



Confinement-deconfinement 
Phase Transition

Ionization of 
color charge

Confinement No ionization

〈
1

Nc
trL

〉
! 1

〈
1

Nc
trL

〉
< 1

Introduction

Ionization parameter:
Polyakov loop

Complete deconfinement

Partial deconfinement

Complete ionization

Partial ionization

trL = tr Peig
R

dτA0

〈
1

Nc
trL

〉
! 0



can use derivative expansion.

Analytical continuation

g ! 1

Assumption

• Coupling is small

• Background gauge field is hard

• Slowly changing

is decomposed to background and quantum field,A0

:Matsubara frequencyωn

∂Q/T ∼ gT

Q ∼ T

Q corresponds imaginary chemical potential,
iωn + iQa → p0 ± iε

A0 = Q/g + Aqu
0



Pure glue

Viscosities

Xij =
1√
6
[∇jui −

2
3
δij∇lul]

〈Tij〉 = δij〈P〉 − η
√

6Xij − ξδij∇lul

Stress tensor

〈Tµν(x)〉 =
∑

spin,flavor,color

∫
d3p

(2π)3
pµpν

2ε
fa(p, x)

In kinetic theory

+M =
Scattering amplitude

+ · · ·



Linearized Boltzmann Equation

S = Cχ

Shear Viscosity

in (local) equilibrium

Arnold, Moore, Yaffe (01)

fa
0 =

1
e(uµ(x)pµ(x)−iQa(x))/T (x) ± 1

fa = fa
0 +

∂fa
0

∂ε
XijIijχ

a Iij =
√

3
2
(p̂ip̂j −

1
3
δij)

Assume that the system is near (global) equilibrium.
Expand the distribution function:

Linear equation is obtained as

S and Cχ correspond to Df  and the collision term
 in Boltzmann equation, respectively.

χ = C−1SThe solution is formally obtained:
η =

1
15

StC−1S



Debye mass

HTL’s in the semi-QGP
Hard

Soft

Tadpole, ghost diagrams
P ∼ gT

+

Hard Thermal Loop approximation

Ordinary HTL approx. term
The thermal mass changes.

hab ∼ 0 gluons don’t propagate.

Semi-QGP phase hab < 1

Complete QGP hab = δab

= (m2
D)ab

(
δµ0δν0 −

∫
dΩ
4π

(P )0K̂µK̂ν

P · K̂

)
− ifab

c〈(Jc)0〉
∫

dΩ
4π

K̂µK̂ν

P · K̂

Πµν(P ) =

m2
D =

1
6
Ncg

2T 2where

Confined phase

K, Q ∼ T

[m2
D(Q)]ab = m2

D × hab(Q)



Linearized Boltzmann Equation

S = Cχ

Viscosities

in (local) equilibrium

Arnold, Moore, Yaffe (01)

Distribution function 
fa
0 =

1
e(uµ(x)pµ(x)−iQa(x))/T (x) ± 1

Dfa =
∂fa

0

∂ε
|p|IijXij

Ca[f ] =
1
2

∑

color,spin,flavor

∫
dΠ(2π)4δ4(p1 + p2 − p3 − p4)|M|2

×fa
0 f b

0(1± f c
0)(1± fd

0 )(fa
1 + f b

1 − f c
1 − fd

1 )

fa = fa
0 +

∂fa
0

∂ε
f1

Iij =
√

3
2
(p̂ip̂j −

1
3
δij)

Xij =
1√
6
[∇jui −

2
3
δij∇lul]

Distribution function f1 ! 1


